
A Survey of Parallel Programming

Languages and Tools

Doreen Y. Cheng I

Report RND-93-O05 March 1993

NAS Systems Development Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

-2-

Abstract

This survey examines thirty-five parallel programming languages and fifty-
nine parallel programming tools. Focus is placed on those tool capabilities
needed for parallel scientific programming rather than for general computer sci-
ence. The tools are classified based on their functions and ranked with current

and future needs of NAS in mind. In particular, existing and anticipated NAS

supercomputers and workstations, operating systems, programming languages
and applications. Tables are presented to compare the main functions provided
by the tools.

-3-

Introduction

Providing sufficient parallel programming tools is one key step to enable
NAS users to use parallel computers. The report _A Survey of Parallel Program-

ming Tools M (RND-91-005) has been requested by more than 100 organizations.
Since then, NAS has added massively parallel supercomputers into its production
computing facilities. Programming for a wide variety of parallel architectures
(SIMD, shared-memory MIMD, distributed-memory MIMD, heterogeneous MIMD)
demands a survey of a broader range of programming tools than the tools
included in report RND-91-005. In response to the new demand, this report sur-
veys parallel programming languages as well as tools. In the text below, they are
both referred to as tools. The scope of the survey has been enlarged to include
tools for all forms of parallel architectures and programming paradigms.

More than 80 tools were submitted to the survey; only a few were eliminated
due to their proprietary or obsolescent nature. About a dozen entries were writ-
ten based on available documents. This survey shares the same goal with the

previous one: to help scientific users use the NAS parallel supercomputers. Focus
is placed on those tool capabilities needed for parallel scientific programming
rather than for general computer science.

This report describes 94 entries. They are grouped into five main categories
based on their functions: languages, libraries, debugging and performance tools,
parallelization tools, and others. The others include partitioning, scheduling and
load balancing tools, network utilities, and tools for building tools. This report
has five parts, one for each category of tools. A category may contain sub-
categories; each subcategory is organized as one section. The tools in each

category/subcategory are ordered according to their usefulness to NAS users.
The usefulness is rated based on the languages that a tool supports, the plat-
forms on which it is currently available, the maturity of the tool, and the sup-
port provided. The information reported is based on the submissions by the tool
developers and available documents; it reflects the status of the reported tools up
until February, 1993.

The report is designed to give readers a quick grasp of the functions pro-
vided by a tool and of its usefulness in comparison with the tools in the same
category. For this purpose, the description of each tool gives no details but only
a brief outline of its main functions from a user point of view. References and
contacts to the tool providers are given for the readers who decide to learn more
about the selected tools. Similar efforts with slightly different purposes and
emphasis can be found in 1 2

To make it easier for readers to find a specific tool in the report, a look-up
table in pages 6-8 lists all the tools in alphabetic order. The _type w entry of the
table indicates the tool category. Appendix A-E presents the tables that compare
the tools in the same category, one for each category. The tools in these tables
are also in alphabetic order. A page number is listed for each tool indicating
where it is described. The tables also indicate the usefulness of a tool to NAS.

The next section explains how the usefulness rating was determined.

-4-

Evaluation Criteria

This report includes evaluation results from two sources: user submissions

and evaluation based on NAS needs. The only editing applied to the submissions
describing user experiences is formatting. Entries with no "Evaluation" item
imply that no descriptions have been submitted from their users.

The evaluation of the usefulness to NAS is based on NAS user experience (if
it exists) and the literature available. A letter rating scheme is used in all the

tables and the meaning of the letter rating is spelled out in each tool entry. The
rating is based on NAS user feedback, the languages that a tool supports, the
platforms on which it is currently available, the maturity of the tool, and the

support provided. The next two paragraphs briefly introduces the computing
environment and the user status at NAS.

NAS currently provides an Intel iPSC/860 and Paragon, Thinking Machine
CMb, CRAY C-90 and CRAY Y-MP for computation-intensive CFD applica-
tions. More massively parallel machines are under consideration for procure-
ment. In addition, NAS is experimenting with a more cost effective approach to
parallel computing by using idle cycles of a network of workstations. The major-
ity of the workstations at NAS are SGIs with a small number of SUNs. All plat-
forms use UNIX or UNIX-based operating systems.

NAS users are quite familiar with vector-oriented supercomputers (CRAY-

style), and are making a transition to using massively parallel machines (Intel,
TMC, and a network of workstations). A small percentage of the users have
been developing new parallel algorithms and applications from scratch; the
majority of them have been modifying programs developed by others and/or con-
verting programs to run on the parallel platforms. Most NAS applications are in
Fortran and most users will be using Fortran for new application development in
foreseeable future. A small number of users have started to use C and C+÷.

The remining paragraphs of this section explain the rating scheme. The rat-
ing is biased by NAS needs, and therefore may not apply to other organizations.
The requirements for tools in different categories may differ. For example, sup-
porting all NAS platforms is required by languages and libraries, but not by
debugging and performance tools.

A rating Wy_ in the tables or _yesw in the descriptions means that the tool is
useful to NAS. Criteria 1 or 2 listed below plus 3 and 4 must be met for a tool
to receive this rating: (1) The tool that has been used by NAS users and it is
positively recommended by the users. (2) The tool has been evaluated at NAS

and other organizations and it is positively recommended. (3) The tool supports
the platforms, operating systems, and languages required at NAS. (4) The tool
supplier provides support and maintenance.

A rating nm" in the tables or MMaybeW in the entries means that the tool
maybe useful in its current status. Four possibilities lead to a tool to receive

such a rating: (1) The functions provided by the t0ol match NAS user needs,
but none or limited user experience or evaluation has been reported and the
results are not uniformly positive. (2) The tool is supplied by a hardware vendor,
and it is needed by NAS users (if the hardware is available at NAS). (3) The tool
is an emerging standard supported by many organizations. (4) The tool may be
able to help parallel tool development.

A rating _n n in the tables and _No n in the entries means that the tool is not
useful to NAS. A rating Un,m_ means that the tool is not useful to NAS users in

its current status, but may become useful in the future. Five possibilities lead to

-5-

a tool to receive such ratings: (1) The tool does not provide important functions
needed by NAS. (2) The tool does not support the platforms, operating systems,
and/or languages required by NAS. (3) The tool is based on another tool that is
no longer supported. (4) Other tools in the same category provide more complete
functions and/or support more platforms. (5) The tool is still in prototyping
stage; more development work is needed for production use.

saX :X

paupu_s pasodosd :p_s
aaaU_l_ q p_o I 'Zalnpaqas :as

IOO_ uo!_z!lall_a_d :_d
IOO_ aau_maojaad :d
_aoddn8 _[so_._u :8u

_zn_nj _q_ u! _qX_m '_ux!_ _u_saad _ ou :m'u
OU :U

(smo_Xs SVN _soddns 'p_p_au a_u_u_dxa a_sn) aq_m :m
Lausq.q :qt.l

a_nSu_[:1
z_iinq_p :p

•osn _l _zoddns o_l Mt.nq SlOO_lo_uumaojzod pu¢ saa_$nqop
q_!_ _n_uu I u s! [oo_ aq_ u_auI .d+p+[. '_ldUluX_ so d "_d._ .&_mtzd oq_
m _uo a,satj _q_, '_+, Xq p_,a_uuo_ smog! _uo u_q_ _aom _q ._a_,ua adX_, aq_ uaqN k

9g

Og[
1.8

ggI
eg
Ig
OI

t, gt
8I

kII
I'9

IOI
9£I
1,1,I
gg

91,I
t,L
6g

LI, I
l,g
g8
Ig
II,
9_
_L

60I
gOI
6t
III
9I

saqmn N a_ d

UI "lTl

u

U

u

ILl

£

151_U

LU

p_ls

LUCR

LU

U

II

IlI

IlI_lI

11I

LU'U

KI_II

uI

I.U_U

LUqg

LU*II

LUql

U.I_II

llIqI

U

LU

X
LUll1

LU

U

SVN o_ Inj_;fl

I
d

qIl

ud

I
I
l

d+_d

I
d

d+p+qII
P

o+p+_a

I

d+p+qII

d+[

d+[

q!I
d+l

I
d+p+l

q![
d
d
d

q!I
d

l
adX,L

xapuI

spIaD
SP_dD
d_UaD

l_UUn,_4
aal

I_ u_.t_aOd
(I tr_a_aOd

06 u'_-t_laod
06 ozzod

a_ao_I
uo_l_d

_adxff
.gl(l_ax,q"

soft
ou!(i
I_f(I
SdD

IOOD
aopuo D

O'g _POD
_D

mz_qD
++DD
zad_ D
Xdouu D

sqoI_

J.lad-lq_I_t
_sadx_q,V

"IddV

SIAIIV

soqd_pv

om_ N

-9-

-7-

Index

NaIIlc

HPF
HvDerTool

ImDrov

Intel-Pcrf
IPD

Ip$-2
Jade
KAP

KSR-Peff
Linda

LMP8
Maritxu
MeldC
Mcntat
MNF8

Modula-2*

MPpE
Mtask

O-O Fortran
P-D Linda

P-Languages

P4
]Pi_blo

Paradise
ParaGrauh

Parallax
Parallaxis
ParaScooe

paraSphere
Parmacs

True

]
l+v

mo

P
d
p
!

pa

p
l+d+p

lib

P
l+d

1

llS

l

d+p
lib
1
1
1

lib+p

P

mp
D

l+u
l+d+p

oa+d
d+p

lib+o

Useful to

std
n.m

n.m

m

m
m

p,m
n

m

in

n

In

n

n,m
n,m

n
m

n

_m

n

n,m

m

m

n_m

m

n

n

m

m

n,m

NAS Pa_e Number

12
33
139

104
98

11:_
29
123
107

52
_5
118
42

_7
149
45
91
86
19
(}1
17
69

112
141
105
62
4_
127
9_
76

When the type entry has more than one items connected by ,+,, the first one is
the primary type. For example, "l+d+p" mean the tool is a language with
debuggers and performance tools built to support its use.

d:

1:
lib:

m:

mp:
n:

n_m:

as:

p:
pa:

$c:

std:

y:

debugger
language
library
maybe (user experience needed, support NAS systems)
meta-tool for building performance tools
no

no at present time, maybe in the future
network support
performance tool
parallelization tool
scheduler, load balancer
proposed standard

yes

-8-

Index

Name

Parti
PAT

PC++
PCN

PCP/PFP
PI:)Dp
PICL

Polka

PreD-]p
Prism

PVM
Pvrros

Sa_e

Schedule
Sisal

SPPL
SR

Strand88
TCGMSG

Tiny
TouDomDec

Topsys
Tot_lView

UDB
Upshot

Vienna Fortrar_

Visage
Voyeur
X3H5
XAB
Xodb

TYpe •
lib

Da+D
1

l+d+o
1

lib

rnp
_c

d+p
lib
Da

me
Da+d+D

l+d
lib

1

l+d+D
_ lib

P_
Dart, sc

l+d-I-D
d
d

P
l

l+p

p
1

Useful to NAS

m

m

n.m

n.m

II
11
m

IIl
I1

Y

n

lIl

n

n.m

II
n.m

n.m

Ill
m

n.m

ID
ID
m

n.m

n

111
11

Pace Number
81
130

35
50
27
28
78
143
154
89
67
135
138
134

48
84
60
46
70

_32
150
_4
95
97
117
20
58
116

14
99

100

When the type entry has more than one items connected

the primary type. For example, "l+d+p n mean the tool
debuggers and performance tools built to support its use.

d:

1:
lib:

m:

me:

mp:

n:

n_m:

p:
pa:

sc:

std:

y:

debugger
language

by "+", the first one is

is a language with

library

maybe (user experience needed, support NAS systems)
meta-tool for building compilers
meta-tool for building performance tools
no

no at present time, maybe in the future
performance tool
parallelization tool
scheduler, load balancer
proposed standard

yes

-9-

1. Parallel Languages

This part presents 35 parallel language some of which have tools developed
around them. Section 1.1 presents parallel languages based on extending sequen-
tial Fortran. Section 1.2 presents languages extending C. Section 1.3 lists paral-
lel extensions to object-oriented languages. Section 1.4 describes functional
languages, logical languages, and coordination languages (the languages which tie
functions written in other languages together). The languages within each sec-
tion are ordered according to its availability on the platforms in which NAS is
interested.

- 10-

1.1 Fortran-Based Languages

1.1.1 FORTRAN 90

Functions:

• Extensions to Fortran 77 for parallel programming

• Array operations:

• Extending arithmetic, logical, and character operations
and intrinsic functions to operate on array-valued operands

• Whole, partial, and masked array assignment (WHERE)
• Array-valued constants and expressions
• User-supplied array-valued functions

• Intrinsic procedures to manipulate and construct arrays,
to perform gather/scatter operations, and to support
extended computational capabilities involving arrays

• Control statements and constructs:

• SELECT and CASE, DO WHILE/ENDDO, EXIT, and CYCLE
• Improved facilities for numerical computation
• Portable control over numeric precision specification
• Inquiry as to the characteristics of numeric representation
• Improved control of the performance of numerical programs

• Intrinsic functions

• Dot product
• Matrix multiply
• Matrix reduction operations

• User-defined data types

• Facilities for modular data and procedure definitions

• Pointers

• Dynamic memory allocation/deallocation

• INCLUDE facility to reduce the duplication of common declarations

• Recursive subroutine calls

• Parameterized intrinsic data types to include character sets
other than English

Useful to NAS: Maybe

(Emerging standard,

User experience needed)

-11-

Platforms:

Operating System:

Languages Supported:

The proposed standard is supported by:
Convex, Cray Research, DEC, Intel,
MasPar, SGI, TMC, and Tera

Supported by each platform

Fortran 90

Languages Used in Implementation: Vendor dependent

Graphic User Interface: None

Cost:

Supplier:

Contact:

See reference 3

Vendor dependent

The specification is supplied by ISO/IEC

ISO/IEC

- 12-

1.1.2 HPF (High Performance Fortran)

Functions:

• Extensions to Fortran90 for high performance parallel programming

• Directives:

• Data alignment and distribution to increase locality of reference
• Assertion that the statements in a particular section of code

do not exhibit any sequential dependencies
• Declaration of rectilinear processor arrangements

• FORALL statement and construct

• Pure procedures (procedures, functions, and subroutine that do not
produce side effects) for elimination of undesirable consequences
such as non-determinism in parallel execution

• Extended intrinsic functions and standard library:

• Basic operations that are valuable in parallel algorithm design:

• Reduction functions

• Combining-Scatter functions (Performing combining
operations on gathered data then scatter the results)

• Prefix/Suffix functions
• Sorting functions
• Bit-manipulation functions

• System inquiry functions:

• Actual mapping of an array at run time
• Number of processors and the topology of processors

• Extrinsic procedures:

• Interface to procedures written in other paradigms (e.g. message passing)
• Interface to other languages (e.g. C)

• Parallel I/O (same as in Fortran 90)

• Sequence and storage association

Useful to NAS: Maybe
(Emerging standard,

User experience needed)

Platforms: The proposed standard is supported by:
Alliant, Convex, Cray Research,
DEC, Fujitsu, HP, IBM, Intel, MasPar,
Meiko, nCUBE, and TMC

- 13-

Operating System: Supported by eachplatform

LanguagesSupported: HPF

LanguagesUsed in Implementation: Vendor dependent

Graphic User Interface: None

Cost: Vendor dependent

Supplier: The specification is supplied by
High Performance Fortran Forum

Contact: A draft of 'High Performance Fortran
Language Specification _ available at:
titan.cs.rice.edu

in public/HPFF/draft/hpf-vl0.ps
think.com

theory.tc.cornell.edu
minerva.npac.syr.edu
ftp.gmd.de

See reference 4

14-

1.1.3 X3H5

Functions:

• Extensions to Fortran and C

• SPMD (Single Program Multiple Data), fork-join paradigm

• Shared-memory programming model

• Parallel constructs identifying a block of statements for parallel execution
by one or more processes

• Worksharing constructs defining the units of work that shall be distributed
among a team of processes

• Iterative constructs to distribute entire block of statements to
each process

• Noniterative constructs to distribute several blocks of statements,
one to each process

• Ordered or unordered distribution of work

• Grouping constructs for grouping replicated code and worksharing
constructs to reduce the synchronization overhead

• Synchronization:

• Implicit at the beginning and the end of of parallel constructs, at
the end of worksharing constructs, and at the end of grouping
constructs

• Explicit by using a critical section construct, a lock, an event,
or a sequence

• Control not allowed to be transferred in or out of an enclosing parallel
construct, worksharing construct, grouping construct, or critical section
construct

• Attribute to classify a data object as not available, private, or shared

Useful to NAS: Maybe
Emerging standard,

User experience needed)

Platforms: Vendors participating in definition of
proposed standard: CRAY Computer Co., CRAY
Research In., DEC, IBM, Sun, NEC, KAI, Alliant

Operating System: Provided by each platform

Languages Supported: Fortran, C

- 15-

LanguagesUsed in Implementation: Vendor dependent

Graphic User Interface:

Cost:

Supplier:

Contact:

Seereference 5 6 7

None

Vendor dependent

The specification is supplied by
ANSI Technical Committee X3H5

anonymous ftp to lynx.cs.orst.edu
in pub/x3h5

- 16-

1.1.4 ADAPTOR (Automatic DAta Parallelism TranslatOR)

Functions:

• Extensions to Fortran 77

• Array syntax as defined by Fortran 90

• Parallel loops (forall)
• Data layout/distribution directives

• Libraries for message passing and for global operations of
distributed arrays

• Source-to-source translation to generate Fortran 77 programs with
message passing

• Support for both interactive mode and batch mode

Useful to NAS:

Platforms:

No

(Similar to HPF,
Useful concepts are likely to be

absorbed in standardization effort in USA)

CM5, KSR-1, iPSC/860, Alliant FX/2800,
A network of workstations using PVM,
Parsytec GCel, Meiko Concerto

Operating System: Supported by the platforms

Languages Supported: CM Fortran, Subset of Fortran 90

Languages Used in Implementation: C, GMD compiler generator

Graphic User Interface: Athena widgets, X-Windows system

Cost:

Supplier:

Contact:

None

ftp.gmd.de (129.26.8.90)
in subdirectory gmd/adapt

GMD, I1.HR, Schloss Birlinghoven,
D-5205 St. Augustin, West Germany

Dr. Thomas Brandes

(49)2241- 14/2492
brandes_gmdzi.gmd.de

See reference 8

- 17-

1.1.5 P-LANGUAGES

Functions:

• Extensionsto C and Fortran

• A shared memory programming model for associative and commutative
binary operations on message-passing machines

• Single program multiple data model

• Source-to-source transformation

• Deadlock prevention

• Dependence analysis to achieve overlapped communication and computation

• Communication overhead reduction by consolidating many communication

statements into one and hence increasing average message size

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/2, iPSC/860, Delta, KSR-1, Ncube 2

Operating System: Provided by each platform

Languages Supported: PC, Pfortran

Languages Used in Implementation: C, Lex, and Yacc

Graphic User Interface: None

Cost: $10,000
Academic discounts available

Manual available via anonymous ftp from
karazm.math.uh.edu

Supplier: Department of Mathematics
691 Phillip Guthrie Hoffman Hall
University of Houston
Houston, TX 77204--3476

Contact: L. Ridgway Scott
713) 743-3445
cott_UH.EDU

See reference 9

- 18-

1.1.6 FORCE

Functions:

• Extensions to Fortran for shared-memory multiprocessors

• Statically and dynamically scheduled parallel loops
• Parallel CASE statements
• Barriers
• Critical sections

• A construct for requesting processors to execute different

sections of code (functional parallelism)
• Operations to access user-defined asynchronous variables

(e.g. Produce, Consume, Void, Copy, and Isfull)

• Translation of a Force program to a Fortran 77 program with
system dependent parallel construct.

Useful to NAS: No at present time
Maybe in the future

User experience needed,
ared memory only,

Research project)

Platforms: Y-MP, CRAY2, KSR1, Encore,
Sequent, Convex, Alliant

Operating System: Provided on each platform

Languages Supported: Force

Languages Used in Implementation: Fortran 77 and C

Graphic User Interface: None

Cost: None

Supplier: Computer Systems Design Group
Electrical and Computer Engineering
University of Colorado
Boulder, Colorado

Contact: Dr. Harry Jordan

(303) 492-7927
harry@boulder .colorado .edu

Dr. Gita Alaghband

(303) 556-2940
gita_boulder.colorado.edu

See reference 10 11

- 19-

1.1.7 OBJECT-ORIENTED FORTRAN

Functions:

• Extensions to Fortran to support declaration, creation and
management of objects

• A preprocessor to translate these constructs into standard
Fortran 77

• A library of routines for message passing and object management

• An interface to C++

• Management of parallel execution of instancies of objects

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Not all NAS platforms supported

Research project)

Platforms: Intel iPSC/860, Delta, SGI Power Iris,
SGI Personal Iris, IBM RS6000, Sun

Operating System: Provided by each platform

Languages Supported: Fortran77, C÷+

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Engineering Research Center for Computational Field Simulation
Mississippi State University/National Science Foundation
PO Box 6176

Mississippi State University, MS 39762

Contact: Donna Reese

(601)325-2656
dreese@erc.msstate.edu

See reference 12

- 20 -

1.1.8 VIENNA FORTRAN COMPILATION SYSTEM

Functions:

• Source-to-source translation from Vienna Fortran or Fortran 77 to

Fortran with explicit message passing

• Code generation for supported target machines

• Automatic parallelization and vectorization

• A batch command language to enable the creation of batch files which

may be automatically applied to a Fortran program

• A set of analysis services and a transformation catalog for interactive
user input to guide the system through the parallelization process

• Automatic recording of the sequence of transformations executed and
automatic execution of the sequence in the batch mode

Useful to NAS:

Platforms:

(Additional disk space

Operating System:

No

(Not all NAS platforms supported,
Useful concepts are likely to be

absorbed in standardization effort in USA)

Intel iPSC-860, SUPRENUM supercomputer,

Genesis-P machine, all distributed memory
multiprocessors on which PARMACS (Version 5.0)
runs. SUN SPARCstation with a minimum of 8

Megabytes disk storage,

is required for the parallelization of user code.)

Provided by each platform

Languages Supported: Vienna Fortran, Fortran 77

Languages Used in Implementation: GNU C

Graphic User Interface: XllR5, OSF/Motif

Cost: None

Supplier: University of Vienna,

Institute for Statistics and Computer Science
Bruenner Str. 72
A-1210 Vienna
Austria

Contact: Dr. Peter Brezany
+43-222-392647-227

brezany@par.univie.ac.at

See reference 13 14 15

-21-

1.1.9 FORTRAN D

Functions:

• Extensionsto Fortran 77 or Fortran 90:

• A data decompositiondirective for declaring an abstract problem
domain (index domain) which may also be considereda virtual
processorset

• An array alignment directive for mapping arrays onto the
problem domain

• A data distribution directive for grouping elementsof the
decompositionand aligned arrays, and for mapping them to the
parallel machine (Eachdimension can be local or distributed in
a block, cyclic, or block-cyclic manner.)

• A control directive for deterministic parallel loop execution

• Compiler optimization:

• Symbolic and dependence analysis
• Data and computation partitioning
• Overhead reduction by combining messages based on data

dependences
• Latency hiding by overlapping communication with computation

• Collective communication exploitation (e.g. broadcast g_ reductions)
• Parallelization of reductions and pipelined computations
• Interprocedural reaching decompositions calculation
• Efficient one-pass interprocedural compilation

• Translation of a Fortran D program into an SPMD Fortran 77
message-passing program

Useful to NAS: Maybe
(Technology development prototype for HPF,
Useful for tool development)

Platforms: Sun Sparc, IBM RS6000
Generates code for IPSC/860

Operating System: Provided by each platform

Languages Supported: Fortran77

Languages Used in Implementation: C and C++(g÷÷ compiler)

Graphic User Interface: XllR4

Cost: $150 for site license

Supplier: Center for Research on Parallel Computation

Dept of Computer Science
Rice University

Contact:

See reference 16 17

- 22 -

Theresa Chatman

(713) 527-6077
tlc@cs.rice.edu

- 23 -

1.1.10 FORTRAN M

Functions:

• Extensions to Fortran 77 for parallelism at task level

• Constructs for explicit declaration of communication channels to

plug together program modules called processes (Modularity)
• Capability of encapsulating common data, subprocesses, and

internal communication as processes (Modularity)
• Restricted operations on channels to guarantee deterministic

execution, even in dynamic computations that create and delete
processes and channels (Safety)

• A non-deterministic construct for specifying time dependent actions

• Type checking for channels at compiler time (Safety)

• Tools to specify the mapping of processes to virtual processors
(Architecture Independence: separate the specification that influences
only performance from those that influence correctness)

• A compiler to optimize communication and computation (Efficiency)

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Functional parallelism only,

Research project)

Platforms: Sequent Symmetry, Sun sparc, NeXT
Distributed memory ports scheduled

Operating System: Dynix V3.1.4 with FastThreads thread library
SunOS 4.1.1, NeXTStep 2.1 or 3.0

Languages Supported: Fortran M

Languages Used in Implementation: C and Perl

Graphic User Interface: None

Cost: None

Supplier: Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Ill.

Contact: Ian Foster

708) 252-4619
ortran-m@mcs.anl.gov

See reference 18

- 24 -

1.1.11 CODE 2.0

Functions:

• A large-grain dataflow language for developing parallel programs.

• Graphical interface for users to draw communication structure
of programs

• Nodes for sequential computations defined as calls to routines
expressed in a sequential language

• Arcs for data-flow dependences between nodes
• User defined firing rules for nodes
• Mechanism for controlled use of shared variables
• User defined types.

• Support for hierarchical program development

• Support for program graphs whose topology is determined at runtime

• Automatic program performance instrumentation

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Functional parallelism only,
Research project)

Platforms: Sequent Symmetry, Sun 4 workstations
(Plan to port to IBM RS/6000, and produce

sode for Sequents, Intel iPSC/860, and networks
of workstations)

Operating System: Provided by each platform

Languages Supported: Code 2.0 (Sequential code should be in C)

Languages Used in Implementation: C++

Graphic User Interface: XllR4 or XllR5

Cost: TBD

Supplier: Dept. of Computer Sciences
University of Texas at Austin

Contact: James C. Browne

(512)471-9584
browne_cs.utexas.edu

Peter Newton

(512) 471-9735
newton@cs.utexas.edu

- 25-

Seereference 19

- 26-

1.1.12 GRIDS

Functions:

• A computing environment for grid-based numerically intensive
computation

• Declarative language for overall control of solution method
• Topology description separated from computational algorithms
• Grid constructs as extensions to Fortran for computational

algorithms

• A runtime system which exploits knowledge of the parallelism inherent

in the problem and the grid based solution methods (Explicit parallel
programming not needed)

• Support for regular and irregular grids

• A preprocessor to translate a Grids code (topology, declarative part,
and extended Fortran procedures) to standard Fortran

Useful to NAS:

Platforms:

No at present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Research project)

Networks of IBM RS6000

Operating System: AIX 3.2

Languages Supported: Fortran77

Languages Used in Implementation: C

Graphic User Interface: XllR5

Cost: $400

$135 for educational and research institutions

Supplier: Institute for Parallel and Distributed

High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22

W-7000 Stuttgart 80
Germany

Contact:

See reference 20

Prof. Andreas Reuter

(+49) 711 7816 449

Andreas.Reuter@informatik.uni-stuttgart.de

- 27 -

1.1.13 PCP/PFP (Parallel C/Fortran Preprocessor)

Functions:

• Extensions to C and Fortran.

• Fork-join parallel programming model on shared-memory multiprocessors

• Constructs to group processor resources into teams of processors

• Synchronization-free control constructs

• Low-overhead control constructs (On the order of a couple of local

memory references)

Platform:

Operating System:

Languages Supported:

Useful to NAS: No

(Does not support NAS platforms,
Limited programming paradigm,

Research project)

BBN TC2000

UNIX

C, Fortran77

Languages Used in Implementation: C Lex and Yacc

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 21 22

None

None

Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Brent Gorda

(510) 294-4147
brent_igor.nersc.gov

- 28 -

1.1.14 PDDP (The Parallel Data Distribution Preprocessor)

Functions:

• Extensions to Fortran

• Data parallel programming model on shared memory systems
• Array syntax
• Directives for data distribution

• Library functions for global operations

• Translation of a PDDP program into a Fortran program using PFP
(see entry for PCP/PFP)

Useful to NAS:

Platform:

Operating System:

Languages Supported:

No

(Does not support NAS platforms,
Limited programming paradigm,
Research project)

BBN TC2000

UNIX

Fortran77

Languages Used in Implementation: C, LEX and YACC

Graphic User Interface: None

Cost: None

Supplier: Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Contact: Brent Gorda

(510) 294-4147
brent@igor.nersc.gov

Karen Warren

(510) 422-9022

See reference 23 24

- 29-

1.2 C-Based Languages

1.2.1 JADE

Functions:

• A declarative, data-oriented language for coarse-grain parallel

programming

• Preservation of the abstractions of serial semantics and a single address

space

• Constructs for specifying how a program written in a standard sequential,
imperative programming language accesses data

• Translation of a C program with Jade constructs into a C program with
calls to the Jade implementation

• Dynamic interpretation of Jade specifications to determine which
parts of the program can execute concurrently without violating
the serial semantics

• Generation of the data movement messages required to implement
the abstraction of a single address space on distributed-memory
machines

Evaluation:

(By Martin Rinard of Stanford University)

Applications:

• Water Code: Derived from the Perfect Club benchmark mdg.
Simulates water in the liquid state

• String: Seismic application from the Department of Geophysics,
Stanford University. Performs geophysical travel-time tomography.
Reconstructs a velocity field from cross-well travel time data

• Volume Rendering: Department of Computer Science, Stanford
University. Uses volume rendering to visualize CAT scan data sets.

Strong points:

• Jade's abstraction of serial semantics eliminates nondeterministic,

timing-dependent bugs: all parallel executions of a Jade program
deterministically generate the same result as the serial execution.

• Jade's abstraction of a single address space eliminates the need
for programmers to manage the distribution of data across the
parallel machine.

• Programmers can effectively use Jade to develop coarse-grain parallel
programs that execute efficiently on a range of parallel architectures.

- 30 -

Weak points:

• No support for writing nondeterministic programs

• No user control for the low-level execution of the program
for maximal efficiency

Useful to NAS:

Platforms:

Operating System:

No at present time
Maybe in the future

(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Intel iPSC/860, Stanford DASH,
SGI 4D/240, DEC, Sun, SGI

Provided by each platform

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Department of Computer Science
Stanford University

Contact: Martin Rinard

(415) 725-3722
martin@cs.stanford.edu

See reference 25 26 27

-31-

1.2.2 CHARM

Functions:

• Extensions to C for shared-memory and message-passing systems

• Message-driven, non-blocking, execution for latency tolerance

• Reusable modules and libraries

• Information sharing abstractions

• A notation for specifying dependencies between messages and
pieces of computation

• Generation of C code with machine-specific parallel constructs

• Dynamic and static load balancing

• Trace generation and visualization for performance optimization

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/860, iPSC/2 NCUBE, Sequent Symmetry,
Encore Multimax, Networks of (Unix) workstations,
(Being ported to CMS)

Operating System: Provided by each platform

Languages Supported: C (C++ soon)

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 28 29

X Motif for the performance Visualization tools.

None

Anonymous ftp with conditions

Department of Computer Science
University of Illinois at Urbana Champaign

L.V. Kale
kale@cs.uiuc.edu

- 32 -

1.2.3 DINO

Functions:

• C extensions for data parallel programming

• Process creation, management, and termination
• Process communication and synchronization
• Global operations
• Data partitioning and mapping

• SPM_D Paradigm

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/2, iPSC/860,
network of Sun workstations,

(A Sun required for the front-end of the compiler)

Operating System: Sun/OS for the front end

Languages Supported: C

Languages Used in Implementation: C, Pascal

Graphic User Interface: None

Cost: None

Supplier: University of Colorado

Contact: Bobby Schnabel
bobby@cs.colorado.edu

See reference 30 31

- 33 -

1.2.4HYPERTOOL

Functions:

• C extensions for parallel programming

• Notation to define a procedure as an indivisible unit of
computation to be scheduled on one processor.

• Single assignment property of any parameter of a procedure.

• Directives IN and OUT for specifying whether the parameter
is read-only or read-write.

• Dataflow firing rule for procedure scheduling. (A procedure
can be executed iff all input of the procedure are available.)

• Task graph generation from the data flow between procedures

• Translation of a HyperTool code to a C code with message-passing
between procedures

• Static scheduling of processes to processors on distributed-memory
machines

• Performance estimates and measurements for parallel programs

(speedup, efficiency, suspension time, communication time, etc)

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Functional parallelism only,
Research project)

Platforms: iPSC/2, iPSC/860
Tool runs on: SPARC

Operating System: Provided by each platform

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Department of Computer Science
State University of New York
Buffalo, NY 14260

Contact:

- 34 -

Min-You Wu
(710) 645-3185
wu_cs.buffalo.edu

See reference 32

- 35 -

1.3 Object-Oriented Languages

1.3.1 PC++ (Parallel C++)

Functions:

A data-parallel extension to C++

Collection class for concurrent aggregates (structured sets of
objects that are distributed over the processors and memories in
a parallel system)

• Concurrent application of arbitrary functions to the elements
of arbitrary distributed, aggregate data structures

• Collection alignment and distribution: (similar to HPF)

• Template objects for specifying distributed collections in
a given computation in relation to each other

• An alignment object for mapping a collection to a template.

• Kernel class:

• A global name space for the collection elements

• Method for managing parallelism and accesses to collection
elements.

• Collection library to provide a set of primitive algebraic structures
that may be used in scientific and engineering computations

• Distributed array for Fortran 90 style arrays and array
operations

• Distributed matrix and distributed vector class for BLAS-3

level operations

• Blocked distributed matrix and blocked distributed vector

for exploiting well tuned sequential class libraries for
matrix vector computations

• Grid classes for finite difference and finite element

applications.

• Dynamic structures (trees, unstructured meshes, dynamic
lists, and distributed queues)

• A preprocessor that translate a pC++ code into C++ code

- 36 -

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,

Research project)

Platforms: CM-5, Paragon, Sequent,
BBN TC2000, all workstations

Operating System: Supported by each platform

Languages Supported: pC++

Languages Used in Implementation: C++, C

Graphic User Interface: None

Cost: None

Supplier: Indiana University

Contact: Dennis Gannon

(812) 335-5184
gannon@es.indiana.edu

See reference 33

- 37 -

1.3.2 MENTAT

Functions:

• Extensionsto C++ for parallel programming:

• Data-driven computation model
• Userspecificationsfor parallelism (by identifying the object

classeswhosemember functions are of sufficient computational
complexity to allow efficient parallel execution)

• A compiler which automatically detects the data and control
dependencies between Mentat class instances involved in invocation,
communication, and synchronization

• A run-time system:

• Support for method invocation by remote procedure call (The
compiler decides where and whether the caller needs to block, and
generates code for required synchronization and communication.)

• Program graph construction
• Communication and synchronization management
• Support for a graph-based, data-driven computation model in

which the invoker of an object member function need not wait
for the result of the computation, or receive a copy of the result.

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,

Research project)

Platforms: iPSC/2, iPSC/860 (gamma),
SGI Iris, Sun 3 network, Sun 4 (Spare)network,
(In progress: Paragon, CM-5, RS/6000)

Operating System: Provided by each platform

Languages Supported: MPL - an extended C++

Languages Used in Implementation: C++

Graphic User Interface: None

Cost: None

available by ftp uvacs.cs.virginia.edu

in pub/mentat

Supplier:

Contact:

See reference 34 35

- 38-

Department of Computer Science
University of Virginia
Thornton Hall

University of Virginia
Charlottesville, Virginia 22903

Andrew Grimshaw

(804) 982-2204
grimshaw@virginia.edu
mentat@virginia.edu

- 39 -

1.3.3 COOL (Concurrent Object Oriented Language)

Functions:

• Extensions to C++ designed to express task-level parallelism for shared
memory multiprocessors

• Declaration of C and C÷÷ member functions as parallel to express

concurrency
• A shared address space for communication between parallel

functions

• Monitors for synchronization between shared objects
• Condition variables for event synchronization
• A construct for fork-join style synchronization at task level
• Abstractions for programmer-supplied information about the

data reference patterns of a program

• A yacc-based translator that translates a COOL program into a C÷+
program

• A runtime system that schedules tasks and distributes the data to

increase locality (based on the data reference information), and
balances the load

• MTOOL for identifying memory system and other performance bottlenecks
in programs

• MemSpy, a simulation-based tool, to study the memory system behavior
in detail and identify the causes of poor performance

• Tango, a simulation-based tool that allows us to study the program
performance under different memory hierarchies

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Research project)

Platforms: Encore MultiMax, Stanford DASH
multiprocessor, SGI workstations

Operating System: UNIX

Languages Supported: COOL

Languages Used in Implementation: C, C++

Graphic User Interface: None

- 40-

Cost:

Supplier:

Contact:

None

anonymous ftp from cool.Stanford.EDU

Computer Systems Lab

Stanford University

Rohit Chandra

(415) 725-3648
rohit_cool.Stanford.EDU

See reference 3{}37

-41-

1.3.4 CC++ (Compositional C++)

Functions:

• Extensions to C++ for compositional parallel programming

• Statements for creating new threads of control upon entering a

block of statements (key word par proceeding compound C÷+
statements)

• A statement for parallel threads whose number is determined at

run time (par for)

• A statement for starting a new thread and returning immediately
to the calling process (spawn)

• A sync variable for synchronization and communication between

parallel threads

• A logical processor object for regular C÷÷ global declarations

(no shared address space outside a logical processor object)

• Data parallel, task parallel, and object parallel

• Shared memory and message passing

Useful to NAS:

Platform:

Operating System:

Languages Supported:

No at present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,

Research project)

Sequent Symmetry, Sun, SGI

UNIX

CC++

Languages Used in Implementation: C, C÷÷

Graphic User Interface:

Cost:

Supplier:

Contact:

None

None

ftp csvax.cs.caltech.edu
in comp

California Institute of Technology

Carl Kesselman

(818) 356-6517
carl@vlsi.cs.caltech.edu

- 42 -

1.3.5 MELDC

Functions:

• A C-based object-oriented coordination programming language

• Support for a wide range of high-level features for programmers to cope
with problems in designing open systems

• Support for investigation of the language architecture without modifying
the language internals

• A MeldC variant of the

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Languages Used in Implementation:

Graphic User Interface: None

Cost: None

Supplier:

Contact:

See reference 38 39 40

gdb debugger

No

(Does not support NAS platforms,

For research in language design)

Sun4, DecStations

SunOS 4.1, Ultrix 4.2

MeldC

C and assembly

Programming System Laboratory
Department of Computer Science
Columbia University

Prof. Gail E. Kaiser
MeldC@cs.columbia.edu

- 43 -

1.3.6 PARALLA_X/S

Functions:

• Extensions to Modula-2 for data parallel (SIMD) programming

Means to describe the virtual parallel machine, the number
of identical processors with local memory, the names of communication
ports, and the network topology for data exchange among PEs

• Simulators on workstations and PCs for developing and

debugging parallel programs

• Compilers for massively parallel computers

• Trace generation for Parallaxis programs

• Displays for the load of the processing elements as a function
of the execution time

• Displays for the connection structures between PEs in a Parallaxis program

Useful to NAS: No

(Modula-2 is not considered by NAS)

Platforms: CM2, MasPar MP-1,
Sun3, SPARCstation/Sun4, DECstation,
HP/Apollo 700, IBM RS-6000,
Apple Macintosh, IBM-PC compatibles

Operating System: SunOS Release 4.1, DEC ULTRIX V4.2,
HP-UX 8.07, IBM AIX Version 3

Languages Supported: Parallaxis

Languages Used in Implementation: C

Graphic User Interface: XllR5

Cost: None

anonymous ftp:
ftp.informatik.uni-stuttgart.de
(129.69.211.1)
in pub/parallaxis

Supplier: Institute for Parallel and Distributed Supercomputers,
Univ. Stuttgart, Breitwiesentr.
20-22, D-7000 Stuttgart 80,
Germany

Contact: Dr. Thomas Braunl

+49 (711) 781-6390
braunl@informatik.uni-stuttgart.de

- 44 -

See reference 41 42

- 45 -

1.3.7 MODULA-2*

Functions:

• Extensions to Modula-2

• An arbitrary number of processes operating on data in the same,
single address space

• Synchronous and asynchronous parallel computations
• Arbitrarily nested parallelism
• All abstraction mechanisms of Modula-2

• Automatic process and data distribution by the compiler

Useful to NAS: No

(Modula-2 is not considered by NAS)

Platforms: MasPar MP1, a network of SUN4,
single SUN4 station
(DEC workstations soon)

Operating System: UNIX

Languages Supported: Modula-2*

Languages Used in Implementation: Modula-2 (MOCKA compiler), C
COCKTAIL compiler generation tools

Graphic User Interface: None

Cost: None

Anonymous ftp from iraunl.uka.de
in pub/programming/modula2star

Supplier: Institut fuer Programmstrukturen und Datenorganisation
Fakultaet fuer Informatik, Universitaet Karlsruhe
Postfach 6980, W-7500 Karlsruhe 1, Germany

Contact: Ernst A. Heinz
heinze@ira.uka.de

Paul Lukowicz
lukowicz_ira.uka.de

Michael Philippsen
lukowicz_ira.uka.de

++49/(0)721/6084386

See reference 43 44

- 46-

1.4 Others

1.4.1 STRAND88

Functions:

• A Prolog-like parallel processing language and development environment

• Interfaces for calling C and/or Fortran sequential routines

• Tools that monitor processor and communication load, and visualize
the data

• Library of parallel services, including worker-manager task management
and producer-consumer communication streams

• A symbolic, single-stepping debugger

• The Strand Abstract Machine:

• Support for specification of user application topology
• Automatic mapping of the application topology into the:topology

of the distributed-memory machine or a network of computers
("Virtual Topology" facility)

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms,
Functional parallelism only)

Platforms: iPSC/860, iPSC2/386, nCube 2,
Transputer/Helios, Sequent Balance/Symmetry,
Alliant FX/2800, Encore Multimax and 91X:X
Series, Sun 600MP Multiprocessing Workstation,
Sun SparcStation, Meiko Computing Surface, HP9000
MIPS RISCstation, Cogent XTM Workstation,

MacII, IBM PS/2, RS/6000, NEXT, Pyramid,
TI TMS320C40 Digital Signal Processor

Operating System: Provided by each platform

Languages Supported: Strand88, Fortran, C

Languages Used in Implementation: C, Assembly

Graphic User Interface: Xll version provided with the Sun OS

Cost: Approximately $1000/node commercial
60a_v educational discount

- 47 -

Supplier:

Contact:

See reference 45

Parallel Performance Group, Inc.
3368 Governor Drive, Suite F269
San Diego, CA 92122

Dr. Stuart Bar-On

(819) 737-973
strand@ppg.strand.com
4956839@mcimail.com

- 48 -

1.4.2 SISAL

Functions:

• A general purpose functional language for parallel numeric computation

• Constructs to express scientific algorithms in a form close to their
mathematical formulation with no explicit program control flow

• An interface that allows Sisal programs to call C and Fortran and
allows C and Fortran programs to call Sisal

• Automatic exploitation of parallelism

• An optimizing compiler

• A symbolic debugger

Evaluation:

(By Chris Hendrickson and Dave Hardin of Lawrence Livermore

National Laboratory)

Strengths:

Useful to NAS:

Platforms:

Operating System:

• Programs can be written in Sisal faster than they can be written
in conventional imperative languages.

• Programs in Sisal tend to be shorter in length.

• A Sisal program is executable on single as well as multiple
processors, with no code changes needed.

• Porting between machines involves only recompilation.

• Most Sisal programs outperform equivalent Fortran programs
compiled using automatic vectorizing and parallelizing tools.

No at present time
Maybe in the future
(User experience needed,

Does not support message-passing)

Cray X/MP, Y/M_P, Cray-2, C90,
Alliant, Encore, Sequent,
Suns, Sparcs, IBM PCs, Macintoshes, Vaxes

UNIX (BSD or AT&T)

- 49 -

Languages Supported: Sisal

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 46 47 48 49

None

None

Computing Research Group
Lawrence Livermore National Laboratory

John T. Feo

510) 422-6389
eo@llnl.gov

Thomas M. DeBoni

(510) 423-3793
deboni@llnl.gov

- 50-

1.4.3 PCN (Program Composition Notation)

Functions:

• A C-like language for writing parallel programs:

• Facilities for constructing a parallel program by combining
simpler components in parallel, sequential, and choice blocks

• Support for components written in C, or Fortran (Components
can be written in PCN)

• Constructs for specifying how computation is mapped to
physical processors

• Facilities for reusing parallel code (templates)
• Standard libraries for I/O, mapping, etc

• A highly portable compiler:

• Message-passing code generation for distributed memory machines
• Shared-memory reads and writes on shared memory machines
• An interface to the C preprocessor for macros, and conditional

compilation

• Integrated source-level debugger for PCN programs

• Performance analysis tools for PCN programs

• Upshot: event trace collection, analysis, and visualization
• Gauge: profile collection, analysis, and visualization

Useful to NAS: No at present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms,
Functional parallelism only)

Platforms: Intel iPSC/860, Delta, Sequent Symmetry,
Sun 3, Sun 4, NEXT, IBM RS/6000, HP 9000
(series 800, 700, and 300),
ECstation 5000 (and 3100), SGI Iris

Operating System: Provided by each platform

Languages Supported: PCN, C, Fortran

Languages Used in Implementation: C

Graphic User Interface: XllR5 for performance analysis tools

Cost: None

anonymous ftp from info.mcs.anl.gov

in directory pub/pcn

Supplier: Argonne National Laboratory

Contact:

- 51-

Ian Foster

(708) 252-4619

Steve Tuecke

(708) 252-8711

pcn@mcs.anl.gov

See reference 50 51

- 52-

1.4.4 LINDA

Functions:

• Language extensions to C and Fortran for parallel programming

• A coordination langage for creating parallel or distributed applications
via a virtual shared memory paradigm

• Source level debugger (TupeScop)

• Graphical user interface
• Based on the shared memory

• Interface for processes to attach to standard source-level debuggers
(e.g. dbx)

• Consistency checking for tuple space usage

• Monitors message traffic and moves Linda run time library to reduce the
traffic

• Tuple space usage visualization

Evaluation:

(By Alan Karp of HP, the work was done when he was with IBM) 52

Application:

Linpack 100 code on 5 IBM RS/6000s over Ethernet
and 3 IBM RS/6000s over the Serial Link Adapter (SLA)
fiber optical channel. The experiment was finished in
Aug., 1991

Strengths:

• Linda does what it says it will do and does it well.
• The code is stable, does not crash the system, has only

minor bugs

• Overhead of using the distributed tuple space is small in this
experiment. The message latency and bandwidth are the same as

measured in a program using Express (Done by H. Wang of IBM)

Weaknesses:

• The network performance over the SLA is disappointing. In
the 6ms it takes to get a small tuple from another machine

one can have executed 60,000 floating point operations. Even
accessing a local tuple consumes the time needed to do 3,000 flops.

Useful to NAS: Maybe

(User experience needed,

Does not support all NAS platforms)

- 53-

Platforms:

Operating System:

LanguagesSupported:

iPSC/2, Sun, IRIS, IBM RS6000,
Apollo, Encore,Sequent

Provided by each platform

C, Fortran77

LanguagesUsedin Implementation: C, Fortran

Graphic User Interface: XllR4 for debugger

Cost: $4,995/10workstation
$30,000for iPSC/2

Supplier: Scientific Computing AssociatesInc.

Contact: Sudy Bharadwaj
(203) 777-7442
software@sca.com

See reference 53 54

- 54 -

1.4.5 TOPSYS (TOols for Parallel SYStems)

Functions:

• Autonomous objects for parallel programming (tasks, semaphores, and
mailboxes)

• A location-transparent message passing library MMK, i.e. The user
needs only specify the name of the receiving object (task, mailbox,
semaphore), not a physical resource (such as processor).

• Parallel debugger DETOP:

• Inspecting objects by their names used in the source code
• Observing and altering parallel execution at run time

• Breakpoint types (control flow, data flow, concurrency predicates)
selectable by user

• Distributed breakpoints
• Trace types (data traces, execution traces, concurrency traces,

traces of object interaction) selectable by user
• Display of source code and on-line help
• Single step mode (procedure steps, statement steps)
• Global view of distributed system
• Monitoring of communication

• Parallel performance monitor PATOP:

• System level, Node level, Object level
• Specifying objects to be monitored by names used in source code
• User interaction at run time

• Parallel program visualizer VISTOP:

• Specifying objects to be monitored by names used in source code
• User interaction at run time

• A menu driven selection of objects to be animated in iconified
form or deiconified with additional information

• Scrolling

• Automatic replay at variable speed

• Process-processor mapping according to user specification

• Dynamic load balancing

Useful to NAS: No at present time
Maybe in the future
(User experience needed,

Does not support all NAS platforms and OS)

Platform: iPSC/2, iPSC/860, PARSYTEC SC, EDS

Operating System: NX/2, Parix, CHORUS

- 55 -

LanguagesSupported: C, Fortran77

Languages Used in Implementation: C, C++

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 55 56

X windows

for iPSC systems site license $700
for Parsytec systems: license by Parsitex required

Institut fur Informatik
Technische Universit"at Munchen
P.o.b. 20 24 20
D-8000 Munchen 2

Germany

Prof. Dr. A. Bode

++49-89-2105-8240
bode@informatik.tu-muenchen.de

- 56 -

1.4.6 CAPER (Concurrent Application Programming Environment)

Functions:

• A visual programming tool to assist parallel programming in the large

• Support for medium-grained parallel programming.
• A reusable block methodology with data flowing between blocks to

encourage building-block approach to parallel programming
• Facilities for expressing communication
• Generic parallel algorithms to help in parallelism extraction

(e.g. Sort, Prefix, Search, and Matrix Algorithms)

• A preprocessor:

• Code generation for data distribution, parallel I/O, and
distributed data restructuring

• Code generation for communication, task invocation and
synchronization

• Simple debugging facility for examining processes and communication
states

• Basic performance monitoring

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platforms: HPC multiprocessor, NCR 3450, NCR 3600,
network of SUN-3, SPARC workstations

Operating System: UNIX or VORX

Languages Supported: C, C++, Concurrent C

(Planned: HP FORTRAN)

Languages Used in Implementation: C, C++, Concurrent C

Graphic User Interface: Xll R3-R5

Cost: Available internally to AT&T since 1989
Will be available to external users
in Dec. 1993 to selected customers
at nominal cost

Supplier: AT&T/NCR

Contact: Binay Sugla
(908) 949-0850
sugla@research.att.com

- 57 -

See reference 57

- 58 -

1.4.7 VISAGE (VISual Attributed Graph Environment)

Functions:

• A graph-based parallel programming environment for functional
decomposition on distributed memory multiprocessors

• A large-grain dataflow based graphic language for prototyping:

• Specification of task dependence graph
• Graph annotation with parameters such as message length,

messages distribution, probability of communication

• A graphical, visual editing environment

• Specification for topology
• Task to processors mapping

• Tools for performance prediction and execution behavior simulation

• An object-oriented, structured editor for continuous modification of the
generated prototype into the actual code

• Run-time support:

• On-line display of 3 dimensional causality graph
• Observation of the concurrency set and dead-lock

• Post-mortem analysis:

• Automatic program instrumentation to generate trace
• Display of statistical information with multiple views
• 3-dimensional manipulations of the graphs

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Functional parallelism only,
Research project)

Platforms: Transputers running 3LC, Meiko, Math
based environments (the i486)
Front end on Silicon Graphics
(SUN, iPSC2, Paragon planned)

Operating System: Meiko's CS-tools, 3LC ÷ extensions, Mach

Languages Supported: C and its parallel extensions

- 59 -

Languages Used in Implementation: C, GL on Silicon Graphics

Graphic User Interface: GL

Cost: None

Supplier: Elec. Engineering Dept.
The Technion, Israeli Institute of Technology
Technion City, Haifa
Israel

Contact: Dror Zernik
972-4-294641 or 972-4-323041
dror@ee.technion.ac.il

See reference 58 59

- 60-

1.4.8 SR (Synchronizing Resources)

Functions:

• A language for writing parallel programs with multiple threads of control
connected in arbitrary fashion

• Support for multiple interprocess communication paradigms (local and
remote procedure call, rendezvous, message passing, dynamic process

creation, multicast, semaphores, and shared memory)

• Interface to C

• True parallel execution on multiprocessors and simulated parallelism
on uniprocessors

Useful to NAS: No

(User experience needed,
Does not support Fortran,
Does not support NAS platforms,

Research project)

Platforms: Sequent Symmetry, Sun4, Sun3, DECstation,

SGI Iris, HP RISC and 9000/300, NEXT,
IBM RS/6000, DEC VAX, DG AViiON

Operating System: UNIX

Languages Supported: SR

Languages Used in Implementation: C, Yacc, Lex

Graphic User Interface: None required
Optional interface to X windows included

Cost: None

ftp from cs.arizona.edu in /sr

Supplier: Department of Computer Science
University of Arizona
Tucson, Arizona 85721

Contact:

See reference 60

sr-project@cs.arizona.edu
(602) 621-8448

- 61-

1.4.9 PROLOG-D-LINDA

Functions:

• Extensionsto SICStusProlog

• A distributed tuple spacethat usesunification for matching
• Prolog style deduction in the tuple space
• A control hierarchy that provides remote I/O facilities for

client processes

Useful to NAS: No

(Prolog is not considered at NAS)

Platforms: Networks of SUN Sparc and DEC stations

(Require SICStus Prolog 0.7 or 2.1, and
NFS or equivalent transparent access to shared
files)

Operating System: SUN OS and NFS, Ultrix and NFS

Languages Supported: SICStus Prolog 0.7 and 2.1

Languages Used in Implementation: SICStus Prolog and C

Graphic User Interface: None

Cost: None

ftp from ftp.cs.uwa.edu.au
in pub/prolog-linda (SICStus 0.7 version)
ftp from coral.cs.jcu.edu.au
in pub/prolog-linda (SICStus 2.1 version)

Supplier: SICStus 0.7 version :

Department of Computer Science
The University of Western Australia
Western Australia

SICStus 2.1 version :

Department of Computer Science
James Cook University
Australia

Contact: Geoff Sutcliffe
+61 77 814622

geoff@cs.jcu.edu.au

See reference 61

- 62-

1.4.10 PARALLAX

Functions:

• A language for specifying a parallel program as a hierarchical large-grain
dataflow diagram

• Tools for specifying a target machine as a planar graph of processors and
network links

• Estimates of speedup, processor efficiency, utilization, and critical
path based on the specification

• Heuristics to schedule the program design onto the target machine

• Gantt chart, speedup graph, bar charts for efficiency and resource
utilization

• Simulation and animation of the program execution

Useful to NAS: No

(Does not support NAS platforms,
Functional parallelism only,
Simulation only,

Research project)

Platform: Macintosh

Operating System: Macintosh or A/UX

Languages Supported: Parallax

Languages Used in Implementation: Pascal

Graphic User Interface: Macintosh

Cost: None for researchers and educators

Supplier: Oregon State University

Contact: Ted Lewis

(503)°737-5577
lewis@cs.orst.edu

See reference 62 63

- 63 -

2. Libraries

The fifteen tools described in this part try to achieve portability by provid-
ing libraries. Most of them support parallelism within an application, except CM
which only supports parallelism at job level. Application-oriented high-level
abstractions are provided in Canopy, whereas the others supports programming
languages such as C and Fortran with parallel extensions. A few support pro-
gramming in both shared-memory paradigm and message-passing paradigm; oth-
ers focus on just one. Several of them extend the support for distributed
memory machines to a network of computers. Associated debugging and perfor-
mance tuning tools are provided by only a few of them.

- 64 -

2.1 EXPRESS

Functions:

• Library functions for parallelization

• Support for data and functional decompositions, client/server,
and distributed database

• Automatic loop parallelization, data distribution, and domain
decomposition

• Translation of Fortran 90 source code to Fortran 77

• Support for CM2 extensions

• An interactive distributed source and assembly level debugger

• Tools for performance optimization:

• Program instrumentation

• Run time profile used for guidance
• Dynamic load balancing
• Interactive memory access visualization
• Post-mortem communication and event analysis
• Communication and event monitoring

• Parallel I/O

• Hardware configuration management

Evaluation:

(By Doreen Cheng of NASA Ames Research Center, through testing)

Strengths:

• Provides extensive set of tools for message-passing machines

(debugging, performance monitoring, load balancing and pa.rallelization).

• Covers a broad range of hardware, operating system, and languages.

Weaknesses:

• Debugger, profiler, parallel I/O, graphics are not available on
Y-MP, nor for Intel iPSC/860 with an SGI IRIS as frontend.

• Lacks support for interactive dependency analysis.

- 65-

(By Donna Bergmark of Cornell Theory Center)

• Has not worked properly on any of our platforms.

(By Bill Pearson of University of Virginia)

Application:

• A C program compares a set of protein sequences (typically
10 - 100) to a larger set of protein sequences (2,000 - 10,000)
and calculates a similarity score using several algorithms
that differ in speed over a 100-fold range. Absolute
communications overhead is constant but relative communications

overhead varies from :>50_o to <5°-_o. (Twelve Sparc 4/40 were used.)

Conclusion:

• On problems where communications cost is significant,
PVM (2.4.1) imposes substantially more overhead than
Express (3.2.5) (For PVM, snd()/rcv() was used. For Express
exwrite0/exread() was used.

Useful to NAS: Maybe

(User experience needed)

Platforms: CRAY X-MP (UNICOS), CRAY Y-MP (UNICOS)
Intei iPSC2, iPSC/i860, iWARP, DELTA,
IBM3090 (AIX), IBM ESg000
nCUBE 2, nCUBE 2E, nCUBE 2S

A network of

H:P9000/700, IBM RS6000, PVS, RS6000 with Bit3
shared memory switch, SGI, Sun SPARCstations*,
SPARCServer, SPARCengine2, SPARCserverXXXMP

Transputers including Archipel i860, Inmos,
Microway, Parsytec, Quintek, Transtech i860,
PC's and Sun's.

Operating System: NX on iPSC/860, Paragon OSF/1 on Paragon

Languages Supported: C, Fortran77

Languages Used in Implementation: Fortran 77, Fortran 90, C and C++

Graphic User Interface: X-Windows, Sunview, Postscript

Cost: $3,000 per Intel iPSC/860
$15,000 per Y-MP
$1,500 for network of Suns
20_ maintenance fee per year

Supplier:

Contact:

- 66 -

ParaSoft

Adam Kolawa

(818) 792-9941

See reference 64

- 67-

2.2 PVM (Parallel Virtual Machine)

HENCE (Heterogeneous Network Computing Environment)

Functions:

• Library routines that permits a network of heterogeneous computers
(serial, parallel, and vector computers) to appear as one large computer

• Process management
• Message passing
• Data conversion between different machine representations

• A programming environment

• Graphic interface for users to explicitly specify the parallelism
of a computation

• Tools to automate, as much as possible, the tasks of writing,

compiling, executing, debugging, and analyzing a parallel
computation

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Widely used since it is difficult to write a message passing
program on a network of workstations

(By Glenn Kubena, Kenneth Liao, Larry Roberts of IBM)

Strengths:

• Widely used
• Simple and easy to use

Weaknesses:

• Lack of support for fault tolerance
• Lack of load balancing
• No receipt selectivity other than by message type

- 68 -

(By Bill Pearson of University of Virginia)

Application:

• A C program compares a set of protein sequences (typically
10- 100) to a larger set of protein sequences (2,000 - 10,000)
and calculates a similarity score using several algorithms
that differ in speed over a 100-fold range. Absolute
communications overhead is constant but relative communications

overhead varies from >50_ to <5_o. (Twelve Sparc 4/40 were used.)

Conclusion:

• On problems where communications cost is significant,
PVM (2.4.1) imposes substantially more overhead than
Express (3.2.5) (For PVM, snd()/rcv 0 was used. For Express
exwrit_O/exread 0 was used.

Useful to NAS: Maybe

(User experience needed)

Platforms: All Unix based machines

Operating System: Unix

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: None for PVM, XllR4 for HENCE

Cost: None

send email to netlib_ornl.gov
in the message type:
send index from pvm
send index from hence

Supplier: Oak Ridge National Laboratory
University of Tennessee

Contact: pvm@msr.epm.ornl.gov
hence@msr.epm.ornl.gov

See reference 65 66 67 68

- 69 -

2.3 P4

Functions:

• Subroutine library for parallel programming

• Monitors for the shared-memory model

• Message-passing for the distributed-memory model both on heterogeneous
workstation networks and on parallel machines themselves

• Monitors and message-passing for cluster model

• Trace generation for performance monitoring

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Not installed for general use because it was redundant with PVM
• Some experiments showed that it ran slower than PVM.

Useful to NAS: Maybe

(User experience needed)

Platforms: CM-5, Intel Delta, iPSC/860, BBN TC-2000
and GP-1000, IBM 3090, Gray X-MP,
Alliant FX/8, FX/2800, and CAMPUS,
Sequent Symmetry (both Dynix and PTX),
nCube Sun3, Sun4, IBM RS-6000, Stardent
Titan, NEXT, DEC, SGI, HP

Operating System: Provided by each platform

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

info.mcs.anl.gov
pub/p4/p4-1.2.tar.Z

Supplier: Argonne National Laboratory

Contact: Rusty Lusk
(708) 252-7852
lusk@mcs.anl.gov

See reference 69

- 70-

2.4 TCGMSG (Theoretical Chemistry Group Message Passing Toolkit)

Functions:

• A message-passing library for both shared-memory parallel computers
and distributed-memory parallel computers

• The programming model and interface directly modeled after

(a small subset of) the PARMACS (See PARMACS entry)
• Support for communication over network through TCP sockets
• Support for communication through shared memory if available

• Straightforward load balancing

• Data representation conversion for Fortran integer and double precision
data types and C character data

Useful to NAS: No at present time
Maybe in the future

(User experience needed,

Does not support all NAS platforms)

Platforms: Intel Delta, iPSC/860,
KSR1, Alliant FX/8/80/800/2800, ARDENT,
Convex C220, IBM R6000, HP, Sun, Dec, SGI

Operating System: KSR OS (KSRI)

Concentrix 2800 2.2 (Alliant)
Sun O/S 4.0 or above (SUN)
mix 4.0(SGI)
ULTRIX (DEC)

Stardent Titan O/S 2.2 (ARDENT)
ConvexOS V8.1 (Convex)
AIX 3.1 (IBM)

HP-UX A.B8.05 (HP)

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic: User Interface:

Cost:

Supplier:

Contact:

None

None

anonymous ftp from ftp.tcg.anl.gov
in pub/tcgmsg/tcgmsg.4.02.tar.Z

Mail Stop K1-90

Battelle Pacific Northwest Laboratory
P.O. Box 999, Richland WA 99352

Robert J Harrison

(509)-375-2037
rj_harrison_pnl.gov

-71-

See reference 70

- 72 -

2.5 CANOPY

Functions:

• A runtime library for developing efficient grid-oriented algorithms
on massively parallel MIMD systems

• SPMD programming paradigm

• Application-oriented programming concepts:

• Grids: with connectivity along directions (Grid structure can

be pre-defined, arbitrary, and user-defined.)
• Sites on the grid: with neighboring sites defined by the

connectivity
• Fields of data: consisting of one realization of a structure on

each site

• Links: corresponding to the connections between sites along
various directions, and fields defined on the links rather than
the sites

• Tasks: performing computation over a set of sites
• Ordered sets of sites

• Maps: to move from one defined grid to another

• A paradigm:

• A site represents a virtual processor with fields in its local
memory

• A task implies that all the virtual processors are computing
in parallel

• A Canopy program:

• A declaration section for grids, fields, sets, and maps
• A control part calls tasks to be executed in parallel
• The task routine to be executed on each processor

• Automatic data and task distribution and communication

• A tool that allows an SGI host to monitor a job and display information
about job execution status, time limits, and disk and tape sets mounted

• A spooler which handles the assignment of resources so that a queue
of jobs can be submitted to multi-user time sharing

- 73 -

Evaluation:

(By Glenn Kubena, Kenneth Liao, Larry Roberts of IBM)

Strengths:

• Well suited to applications whose domain can be represented
by grids

• No new language or extensions for user to learn
• Relatively mature

Weaknesses:

• Currently limited to the AGPMAPS machine at Fermilab

• User must be cognizant of and observe certain programming
restrictions to write programs successfully with Canopy

• Lack of debugging and performance tuning tools

Useful to NAS:

Platforms:

Operating System:

No at present time
Maybe in the future

(User experience needed,
Does not support NAS platforms)

Sequent, Weitek-based 5GF ACPMAPS,
50GF i860-based ACPMAPS,
(Being ported to the Intel DELTA, iPSC/860,
and Paragon) (Not suitable for vector
machines and SIMD systems)

POSIX-like system calls

Languages Supported: C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None (with restrictions)

Supplier: Computing Division

Fermi National Accelerator Laboratory
Batavia IL 60510

Contact: Mark Fischler

(708) 840-4339
mf@fnal.fnal.gov

See reference 71 72 1

- 74 -

2.6 CPS (Cooperative Processes Software)

Functions:

• A library of routines callable from Fortran or C code

• Supports computational task distributed across a heterogenous
mix of UNIX machines.

• Explicit message passing for task parallelism
• nCall and queue n for implicit parallelism
• Efficient bulk data transfer

• Process classes for grouping the processes to execute the same
program on same kind of computer

• Remote procedure call
• Synchronization

• A job manager for the construction and execution of parallel programs

• Starting, stopping, and monitoring processes
• Managing queues
• Dynamic process allocation on a per class basis

• MIMD model (within each class, a single program is run)

• Support for host-node, client-server, and input-processing-output
topologies as well as user customized topologies

• XOPER: an X-window based computer operator programs which supports
mount requests, messages, etc to operations.

• CPS_XPSMON mulitple process performance monitoring tool (a terminal
base version is also available)

• CPS_PSMON: a terminal based performance monitoring tool

• JMDB: a distribute processing debugging tool

Evaluation:

By B. Traversat at NASA Ames Research Center (Previously at
uperconducting Super Collider (SSC)))

• Unreliable when more than 30 workstations are used in a network

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support NAS platforms)

- 75 -

Platforms: SGI IRIX, IBM RS6000, DEC (VMS VAX), Sun,
HP, and MIPS workstations, and ACPR3000
boards in use at Fermilab;

Interconnection networks supported include
Ethernet, VME-based bus communications,
and internal buses on multiple-processor
workstations.

Operating System: UNIX, provided by each platform
(VMS Vaxes are also currently supported)

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None (with restrictions)

Supplier: Computing Division,
Fermi National Accelerator Laboratory
Batavia IL 60510

Contact: Kevin Q. Sullivan
(708) 840-8789.
kev ins@baja.fnal.gov
or
eps_req@fndpl.fnal.gov

See reference 73 74 75 76 77

- 76-

2.7 PARMACS

Functions:

• A message-passing programming interface for both shared-memory
parallel computers and distributed-memory parallel computers

• Macros for process management, message-passing, and
synchronization

• Macros for process/processor mapping (torus, graph, and
embedded tree for global communication)

• Macros for dynamic torus remapping and switch dimensions
between 3D and 2D

• Libraries for linear algebra and for grid-based applications

• Performance analysis tools

• Visualization of process states and communication (post-mortem)

Useful to NAS: No at present time
Maybe in the future

(User experience needed,

Does not support all NAS platforms)

Platforms: Intel iPSC/860, Meiko CS-Tools, nCUBE 2,
Parsytec GC, CRAY Y-MP, A network of DEC,
IBM RS/6000, SGI, and SUN workstations

Operating System: None

Languages Supported: Fortran77, PARMACS 6.0: Fortran77, C

Languages Used in Implementation: C

Graphic User Interface: XllR3 (or later) for the performance analysis tools

Cost: DM 2,000 on a workstation
DM 10,000 on CRAY

Supplier: PALLAS GmbH
Hermuelheimer Strasse 10
5040 Bruehl

Germany

GMD
Postfach 1316

5205 St. Augustin
Germany

Contact:

See reference 78 79 80 81

- 77 -

Distribution, general information:
Karl Solchenbach
-4-49-2232-1896.0

karls@pallas-gmbh.de

Development of programming interface:
Rolf Hempel

+49-2241-14.257512757
Rolf.Hempel@gmd.de

- 78 -

2.8 PICL (A Portable Instrumented Communication Library on Intel)

Functions:

• Library routines for writing parallel programs on message-passing
computers

• Process management
• Message passing
• Synchronization

• Global operations

• Trace generation for performance monitoring (visualized by ParaGraph).

Evaluation:

(Compiled by Diane Rover and Joan Francioni of Michigan State University)

• Mostly used to generate a

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

trace for visualization using ParaGraph 82

Maybe, in conjunction with ParaGraph
(User experience needed)

iPSC/2, iPSC/860, Delta, Paragon
Ncube/3200, Ncube 2, Cogent, mpsim

Provided by each platform

Fortran77, C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 83

None

None

available from netlibQornl.gov

Oak Ridge National Laboratory
Oak Ridge, TN

Pat Worley
(615) 483-8111
worley@msr.epm.ornl.gov

- 79 -

2.9 APPL (Application Portable Parallel Library)

Functions:

• A subroutine-based library of communication primitives

• Support for shared and distributed memory MIMD machines, and
networks of workstations

Evaluation:

(By Kyung Ahn, Scott Townsend, and Suresh Khandelwal of
NASA Lewis Research Center)

Applications:

• MHOST: A finite element program for nonlinear analysis of
aerospace propulsion system structures

• MSTAGE: A multistage viscous turbomachinery program
• PARC3D: A 3-dimensional fluid dynamics code calculating

the thermodynamic properties of a fluid flow

Strengths:

• Simple to understand, easy to use
• The code portable to different platforms
• Easy to install the system

Weaknesses:

• Lack of global operations on groups

• Different definition of synchronous/asynchronous send/receive
operations with that supplied by vendors

Useful to NAS: No at present time
Maybe in the future
(User experience needed,

Similar tools support more NAS platforms)

Platforms: iPSC/860, Delta, Alliant FX/80, Hypercluster
aGNASA LeRC multi-architecture test bed),

I, Sun Sparc, IBM RS6000 workstations.

Operating System: Provided by each platform

Languages Supported: Fortran, C

Languages Used in Implementation: C and Fortran

Graphic User Interface: None

Cost: None (with permission)

Supplier: NASA Lewis Research Center

Contact:

See reference 84

- 80 -

Angela Quealy

216) 826-6642
sang_kira.lerc.nasa.gov

-81 -

2.10 PARTI (Parallel Automated Runtime Toolkit at ICASE)

Functions:

• Runtime preprocessing procedures:

• Coordinate interprocessor data movement.
• Manage the storage of and access to copies of off-processor data.
• Upport a shared name space.
• Couple runtime data and workload partitioners to user programs.

• Accessible directly by programmers

Useful to NAS: Maybe

(User experience needed)

Platforms: iPSC/860, Delta, NCUBE, CM5,
a network of workstations

(Versions of Parti are built on top of Intel,
CM-5 message passing calls, PVM, and Express)

Operating System: Provided by each platform

Languages Supported: C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

ftp : hyena.cs.umd.edu
in pub/patti distribution and
block__parti distribution

Supplier: University of Maryland

Contact: Raja Das

(301) 405-2693
raja@cs.umd.edu

See reference 85 86 87 88

- 82-

2.11 CM (Communications Manager)

Functions:

• Library routines for job-level parallel execution on a network of
heterogeneous machines

• Facilities for specifying the applications to be executed, their input
and output arguments, and any explicit precedence instructions
(Interactive applications cannot be included unless the IO can be
redirected using files.)

• Communication Services:

• TCP/IP based application to application connection and inter-process
communication library for heterogeneous platforms

• File transfer in program-to-program space (To transfer files the

nodes need not be sharing file systems via NFS or ftp or uucp.)

• Directory Services:

• TCP/IP based directory services for groupwork
• Support for dynamic definition, registration besides lookup of

networked resources

• Support for interaction between applications using symbolic
references rather than network addresses

• Transparent client migration when a server migrates from one
host to another

• Application Management System:

• TCP/IP and Unix based network application invocation utility
• Automatic transport of input files and output files to and

from the client site to the application site
• Security enforcement using the Directory Services in that only

registered users may execute and only from registered machines

• Task Management System:

• Analysis of dependencies between jobs based on a user-defined
task description file

• Generation of a maximally concurrent activation data flow chart

• Synchronization between jobs if there is input/output dependency

Useful to NAS: No at present time
Maybe in the future
(User experience needed,

Job-level parallelism only)

- 83-

Platforms:

Operating System:

Languages Supported:

Sun Sparcs, DEC2000 ,DEC3000, DEC5000,
SGI workstations

SunOS, DEC/Ultrix, SGI/IRIX OS

C

Languages Used in Implementation: C, TCP/IP, UNIX/OS (mostly POSIX compliant)

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 89 90 91 92

None

None

Concurrent Engineering Research Center
West Virginia University
Morgantown, WV 26505

Raman Kannan
kannan@cerc.wvu.wvnet.edu

- 84 -

2.12 SPPL (The Stuttgart Parallel Processing Library)

Functions:

• A message-passing library for a heterogeneous distributed memory system

• Support for abstract data types for messages

• Simple data types
• Arrays and records
• Arbitrary pointer structures

Useful to NAS: No

(User experience needed,
Does not support Fortran,

Does not support NAS platforms)

Platforms: IBM RISC System/6000
Sun, DEC workstations

Operating System: AIX 3.2, SUN OS 4.1, ULTRIX 4.2

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: $100
$35 for educational and research institutions

Supplier: Institute for Parallel and Distributed

High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22

W-7000 Stuttgart 80
Germany

Contact: Prof. Andreas Reuter

(+49) 711 7816 449
Andreas.Reuter@informatik.uni-stuttgart.de

See reference 93

- 85-

2.13 LMPS (The Livermore Message Passing System)

Functions:

• A library of routines that implements an efficient message passing
system on the BBN TC2000

• Support for synchronous and asynchronous (blocking and non-blocking)
message passing, and selective reception of messages based on type
and source

• Integrated with the PCP/PFP environment (See entry for PCP/PFP)

Useful to NAS:

Platform:

Operating System:

Languages Supported:

No

(User experience needed,
Does not support NAS platforms)

BBN TC2000

UNIX

Fortran77, C

Languages Used in Implementation: C, PCP

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 94

None

None

Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Tammy Welcome

(510) 422-4994
tsw@mpci.llnl.gov

- 86 -

2.14 MTASK (The MultiTASKing package)

Platforms:

Operating System:

Languages Supported:

Functions:

• A multitasking library for forking of tasks from within code that
is already executed in parallel or code that is recursive in nature

• Semaphores for mutual exclusion

Useful to NAS: No

(User experience needed,
Does not support Fortran,

Does not support NAS platforms)

Alliant/FX, Alliant/FX2800

Concentrix (Alliant Unix)

C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

None

None

CSRD

University of Illinois

Brian Bliss

(217)244-5569
bliss@csrd.uiuc.edu

- 87 -

2.15 GENMP (GENeric MultiProcessor)

Functions:

• A run time library for MIMD computer architectures

• Dynamic load balance and interprocessor communication

• Designed for particle methods and for uniform mesh methods that

apply computational effort non-uniformly over the mesh.

Useful to NAS: No

(User experience needed,
Does not support all NAS platforms,

For particle methods only)

Platforms: iPSC/860, Cray Y-NIP, Sparcstation

Operating System: Supported by each plotform

Languages Supported: Fortran?7

Languages Used in Implementation: Fortran 77

Graphic User Interface: None

Cost:

Supplier:

Contact:

None

anonymous ftp cs.ucsd.edu

in pub/baden/genmp

University of California at San Diego

Prof. Scott B. Baden

(019) 534-8861
sbaden@ucsd.edu

Scott Kohn

(619) 534-5913
skohn_ucsd.edu

See reference 95

- 88 -

3. Debugging and Performance Tuning Tools

Twenty three tools described in this part are for debugging parallel pro-
grams and tuning their performance. Section 3.1 presents three environments
integrating both types of tools. Section 3.2 describes the tools that are for

debugging only. Section 3.3 lists the tools that are designed for performance tun-
ing. As a result of visualizing program behavior, however, many tools in the last
section can also assist debugging.

The order of presentation in each section is based on their usefulness to

NAS (platforms, and languages supported), their relative maturity, and the
amount of support from the suppliers. For tools with the same rating, they are
listed in alphabetic order.

- 89 -

3.1 Integrated Systems

3.1.1 PRISM

Functions:

• Integrated graphical debugger, performance analysis tool, and data
visualizer

• Automatic and consistent update for displays of debugging data,

performance data, and source code

• Command alias

• System resource control (e.g. attach/detach sequencers, boot)

• Dynamic linking of programs

• Source-level debugger:

• Breakpoints
• Single step
• Watch points for events
• Expression evaluation
• Trace

• Stack, memory, and register examination

• Performance analysis:

• Procedure level and statement level performance statistics for
a specified resource or subsystem

• Advices to assist isolating performance bottleneck

• Visualization:

• Graphical display for data values or ranges
• Performance statistics for resources

Evaluation:

(By AI Globus at NASA Ames Research Center)

• The best feature is is that it incorporates regular field
visualization techniques to examine large arrays quickly.

Useful to NAS: Yes

- 90-

Platforms:

Operating System:

Languages Supported:

CM2, CM200, CM5

CMOS, CMOST

C, Fortran (TMC version)

Graphic User Interface:

Cost:

Supplier:

Languages Used in Implementation: C

X Motif

Bundled with system

Thinking Machine Co.
245 First St.

Cambridge, MA 02142-1264

Contact: (617) 234-4000
(617) 876-1111
customer-suppor t@think.com

See reference 96

- 91 -

3.1.2 MPPE (MasPar Programming Environment)

Functions:

• Integrated graphical debugger, performance profiler, and visualizer,
with client-server architecture for remote debugging

• Static analysis of parallel programs and graphical display of run-time
profile information

• Automatic and consistent update for displays of stack, source code,

and data after each skip, step, and continue during debugging

• Source-level debugging of parallel C and Fortran 90 code:

• Step, skip, continue
• Conditional breakpoints
• Data inspectors

• Evaluation of parallel C and Fortran 90 expressions
• Graphical display of variable history
• Animation of step, skip, continue (automatic repetition of commands)
• Debugging optimized code

• Performance analysis:

• Statement level and routine level profiling
• Compiler-generated information relating to performance
• Graphical display of profile histograms with source code
• Summary pages for statement and routine level profiles
• Profiling of optimized code

• Visualizer:

• Processor array state
• 2D visualization of variables, expressions

Useful to NAS: Maybe

(User experience needed
if NAS provides MP-1, MP-2)

Platforms: User interface on DecStation and SPARC

The program to be debugged on MP-1 or MP-2

Operating System: DecStation- Ultrix 4.2, SPARC- SunOS 4.1.1

Languages Supported: C, Fortran77, MasPar Fortran, MPL

Languages Used in Implementation: Smalltalk and C++

Graphic User Interface: DecStation- Motif, SPARC- OpenWindows

- 92 -

Cost:

Supplier:

Contact:

One concurrent use license free with

MasPar system. Additional licenses $2500
per concurrent use.

MasPar Computer Corporation
749 N. Mary Avenue
Sunnyvale, CA 94086

Helen Asher

(408)736-3300
See reference 97

- 93 -

3.1.3 PARASPHERE

Functions:

Useful to NAS:

• An integrated environment with OSF/Motif-like graphical interface

• High Performance Fortran with interface to C and Fortran 77

• DECmpp Programming Language (DPL), a C-like programming language

• System level commands for accessing the DECmpp 12000 Data Parallel
Unit (DPU)

• An interactive parallel source-level debugger

• Expression evaluation (DPF or DPL syntax)
• Conditional breakpoints
• State log and replay

• A profiler for analyzing program runtime statistics

• Hierarchical and static profiling

• A call graph browser for viewing call relationships between program
functions, files, and directories in graphic form

• A cross-referencer for determining where names are declared, defined,
or referenced in a program

• DECmpp VAST-2 that translates Fortran 77 source code to DECmpp
High Performance Fortran

• Data dependency analysis
• Safe loop transformation
• Splitting of common blocks and separate scales from arrays
• User directives and switches for interactive control of

transformation

• Examination of EQUIVALENCE statements to detect hidden
recursion

• Subroutine and function inlining

Platforms:

Operating System:

Languages Supported:

Maybe
(User experience needed
if NAS provides DECmpp)

DECmpp 12000/Sx, 12000

ULTRIX V4.2A

C, Fortran, DPL, DECmpp
High Performance Fortran

Languages Used in Implementation: C and C++

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 98

- 94 -

Motif interface XIPD in late 1993

Bundled with system

Digital Equipment Corporation

146 Main Street, MLO1-3/Bll
Maynard, Massachusetts 01754

Mike Fishbein
fishbein@rdvax.enet.dec.com

- 95-

3.2 Debuggers

3.2.1 TOTALVIEW

Functions:

• Multi-process debugger

• Less-intrusive (It does not require any special libraries to be linked

and allows code and conditional breakpoints to run as compiled code.)

• Ability to patch with compiled code

• Expression evaluation facility

• Evaluated breakpoints

• Multi-process breakpoints

• Integration with GIST for event logging (see BBN Performance Tools)

• Graphical interface for program control and breakpoint setting

• Ability to attach to running processes

• Ability to attach to processes created by fork

• Ability to debug a program running on a remote workstation

• Ability to communicate with the target system through shared memory,
TCP/IP, or a serial line

• Ability to download code to an embedded system from a host for cross
development purposes

Useful to NAS: Maybe

(User experience needed
if NAS provides CRAY MPP)

Platforms: BBN GP1000 and TC2000

Tadpole TP885v, FASP, Motorola 680x0, 88100
Sun SPARC, AT&T DSP32C
(In process of porting to CRAY MPP)

Operating System: Implementations available for SunOS, pSOS,
Lynx Realtime O/S, BBN nX, and hardware
with no operating system

Languages Supported: C, C++, Fortran

Languages Used in Implementation: C++

- 96 -

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 99

XIIR4

Embedded system solution typically$16K for the

licenseplus the cost of porting to the given system

Pricing for the Sparc version announced in the future

BBN Systems and Technologies

David Rich

(617) 873-2634
drich@bbn.com

- 97 -

3.2.2 UDB (KSR symbolic debugger)

Functions:

• Breakpoints

• Examining and displaying data

• Examining the stack

• Specifying and examining source files

• Alias and user-defined commands

• Editing the command line

• Window status and control

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Functional and helpful

Useful to NAS:

Platform:

Operating System:

Languages Supported:

Maybe
(User experience needed
if NAS provides KSR1)

KSR1

KSR OS

Fortran, C

Graphic User Interface:

Cost:

Supplier:

Languages Used in Implementation: C

XllR5

Bundled with system

Kendall Square Research
170 Tracer Lane

Waltham, MA 02154

Contact: Steve Breit

(800) 669-1577
sbreit@ksr.com

See reference 100

- 98 -

3.2.3 IPD

Functions:

• Source-level parallel debugger

• Breakpoints
• Watchpoints
• Data display and modification
• Source listing
• Register display
• Disassembler
• Stack traceback

• Debugger environment variables and command aliases

• Run-time instrumentation of programs for profiling and event
tracing (No special compile or link options necessary)

• Extensions to support distributed-memory parallel programs

• Message queue display

• All commands applicable for one or multiple processes

• Control for separating debugger I/O from application I/O

• Menu-driven graphical interface (release 1.1)

• Integration with the performance analysis tools (release 1.1)

• Debug session logging facility

Useful to NAS:

Platforms:

Operating System:

Languages Supported

Maybe
(User experience needed)

iPSC/860, planned for Paragon

NX on iPSC/860, Paragon OSF/1 on Paragon

C, Fortran77

Languages Used in Implementation: C and C++

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 101

Motif interface XIPD in late 1993

Bundled with system

Intel Supercomputer Systems Division

Intel SSD Support
1-800-421-2823

support@ssd.intel.com

- 99-

3.2.4 XAB

Functions:

• Preprocessors and libraries for instrumenting PVM programs

• A monitoring process for collecting trace information as the program
executes

• Graphic display of events and PVM calls

• A script for converting xab tracefiles to PICL tracefiles for use with
Paragraph

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Maybe

(User experience needed)

Unix based system where PVM runs

UNIX

C, Fortran77

Languages Used in Implementation: C, CPP, m4, awk

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 102

X11R4, Athena widgets

None

School of Computer Science and
the Pittsburgh Supercomputer Center
Carnegie Mellon University

Adam Beguelin
(412) 268-7866
adamb@cs.cmu.edu

- 100 -

3.2.5 XPDB

Functions:

• A graphic debugger for programs using SPPL (see SPPL entry)

• Examining message passing
• Viewing hierarchical dataflow graph
• Invoking sequential source code debuggers

• Facilities to print the data in selected messages

• Automatic selection of the appropriate print format depending on the
abstract data type of the message

Useful to NAS: No

(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Limited to programs using SPPL)

Platforms: IBM RISC System/6000
Sun, DEC workstations

Operating System: AIX 3.2, SUN OS 4.1, ULTRIX 4.2

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: X Window System XllR4 (or higher)

Cost: $200
$65 for educational and research institutions

Supplier: Institute for Parallel and Distributed

High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22

W-7000 Stuttgart 80
Germany

Contact: Prof. Andreas Reuter

(+49) 711 7816 449
Andreas.Reuter_informatik.uni-stuttgart.de

See reference 93

- 101 -

3.2.6 EXECDIFF

Functions:

• Library routines for specifying the data objects to be monitored
during execution

• Value Monitoring for the specified data objects in two versions of
a program

• Specification of a tolerance for the difference in floating point
numbers

• Value comparison for the data objects generated by executing the two
versions to assist debugging

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

No

(User experience needed,
Does not support NAS platforms,
Limited to debugging programs

evolved from a correct version)

Alliant Computers

Unix (Berkeley or System V)

C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Center for Supercomputing Research & Development
University of Illinois

Contact: Brian Bliss

(217) 244-5569
bliss_csrd.uiuc.edu

- 102 -

3.3 Performance Tools

3.3.1 ATEXPERT

Functions:

• Performance monitoring and visualization

• Instrumentation of parallel regions indicated by the Autotasker and
the serial sections of code (with 10°"/o-20% overhead)

• Program
• Subroutines

• Parallel regions
• Parallel loops

• Graphical displays of performance data

• Time spent in program segments
• Number of processors on which a code segment is running

• Prediction for speedups on a dedicated system from data collected
from a single run on a nondedicated system

Evaluation

(By Robert J. Bergeron of NASA Ames Research Center)

Strengths:

• Easy to use and provides flexible operation.
• Provides a detailed insight into parallel execution on

Gray architectures.
• Text identifies many specific regions and causes of poor

parallel performance.
• Visual display allows user to form their own judgements.

Weaknesses:

• Requires a strong understanding of Cray parallel processing
and online help is insufficient.

• Basis for text judgements of poor parallel performance is not
available (would be available on a true "expert" system).

• Emphasizes predictive capability whereas its main value is
providing insight.

Useful to NAS: Yes

Platforms: CRAY Y-MP, X-MP EA, X-MP, CRAY-2
Display on SGI and Sun

Operating System: UNICOS 6.0

FMP of the CF77 compiler release 4.03 or above

- 103-

LanguagesSupported: Fortran, C

LanguagesUsedin Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

Seereference 103

X Windows (ASCII available)

Bundled with system

Cray ResearchInc.
2360Pilot Knob Rd.
Mendota Heights, MN 55120

(612)681-5907

- 104-

3.3.2 INTEL PERFORMANCE ANALYSIS TOOLS (release 1.1)

Functions:

Useful to NAS:

• Based on ParaGraph

• Motif-based menu-driven graphical interface

• Animation of the execution of parallel applications derived from trace
information gathered during program execution

• Graphical summaries and statistical analysis of overall program behavior

• Pause/resume, single-step, slow down, or restart an animation from
any point.

• Processor usage

• Frequency, volume and overall pattern of inter-processor
communications

• Critical Path displays
• Task displays relating processors with the part of the

executing parallel code

Platforms:

Operating System:

Languages Supported:

Maybe
(User experience needed)

iPSC/860, Paragon

NX on iPSC/860, Paragon OSF/1 on Paragon

C, Fortran77

Languages Used in Implementation: C and C++

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 104

Motif interface XIPD in late 1993

Bundled with system

Intel Supercomputer Systems Division

Intel SSD Support
1-800-421-2823

support@ssd.intel.com

- 105-

3.3.3 PARAGRAPH

Functions:

• Trace-based performance visualization of message-passing parallel
programs (trace data generated by PICL, see entry for PICL)

• Dynamic, graphical depiction of processor utilization, communication
traffic, load balance, and other aspects of program behavior and
performance

Evaluation:

(By Diane Rover and Joan Francioni of Michigan State University) 105

Applications:

• Teaching parallel computing and programming to novices pre-college
students

• Teaching parallel computing and programming to advanced graduate
students

• SLALOM: solves a radiosity problem in which the walls of a room
are decomposed into patches. Computation time typically is dominated
by the solution of a symmetric matrix using Gaussian elimination and

back substitution techniques (on nCUBE-2, 128 nodes)

Strengths:

• Widely used
• Achieved considerable success when used to introduce parallel

computing and programming to novices.

• Provided a common introduction and foundation for similar tools,
and students could readily gain hands-on experience with it in
self-paced laboratory exercises.

• PICL and Paragraph provided valuable assistance in studying and
optimizing the SLALOM program.

Weaknesses:

• Considerable effort is required to selectively trace large programs
or view only parts of a large trace file.

• Considerable effort is required to selectively reduce the trace
data generated for runs with many processors.

• Movement through the trace file during ParaGraph simulation is
constrained.

• There is no corresponding view of the source program.
• Invoking user-/application-specific views requires creating separate

executables of ParaGraph.
• Comparison of data from multiple trace files requires running multiple

instances of ParaGraph.

- 106-

Suggestionsbased on experience:

• Prototyping views using the commercially-available and
general-purpose tools AVS and MatLab

• Integrate the tested views into ParaGraph.

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Maybe
(User experience needed)

Unix workstation with X Windows

UNIX

C, Fortran77

Graphic User Interface:

Cost:

Supplier:

Languages Used in Implementation: C

X Windows (Xlib, no toolkit)

None

Oak Ridge National Laboratory
and University of Illinois

Contact: Michael Heath

(217) 333-6268
heath@ncsa.uiuc.edu

See reference 106

- 107-

3.3.4 KSR PERFORNL_NCE TOOLS

Functions:

• Prof for displaying profile data produced by the monitor subroutine

• Percentage of time spent in a subroutine
• Number of times called

• Number of milliseconds per call
• A summary of profile (for multiple profile files)

• Gprof for displaying call graph profile data

• A performance monitoring library for per-thread performance data

• Performance data from the event monitor, hardware registers,

and the kernel (user-time, wall-clock-time cache hits/misses,
thread migration, etc.)

• Functions for accessing performance data
• Functions for timing

Evaluations:

(By Donna Bergmark at Cornell Theory

Strengths:

• The timer is good.

Weaknesses:

Center)

Useful to NAS:

Platform:

Operating System:

Languages Supported:

• Does not measure elapsed time across parallel jobs.

Maybe
(User experience needed
if NAS supports KSR1)

KSR1

KSR OS

Fortran77, C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

None

Bundled with system

Kendall Square Research
2102 Business Center Dr.

Waltham, MA 02154-1379

Contact:

See reference lOO

- 108 -

Steve Breit

(800) 669-1577
sbreit@ksr.com

- 109-

3.3.5 BBN PERFORMANCE TOOLS

Functions:

• GIST: An event logging and display tool

• Events logging from within the user application

• Kernel events (i.e. page swaps)
• User defined events through subroutine calls

• Graphic displays for the events and/or states

• ProfView: a statistical profiler

• An extension of the standard Unix prof/gprof utilities

• Profiling data collection at the subroutine, source line or
instruction level

• Data display along with a graph of time spent in each area

• Multi-threaded program profiling and very light-weight profiling
which produces only histograms

Useful to NAS: Maybe

(User experience needed
if NAS provides KSR1)

Platforms: BBN "Butterfly" series
KSR1

(GIST being ported to Sun Sparc)

Operating System: BBN nX, SunOS, KSR OS

Languages Supported: C, C++, Fortran

Languages Used in Implementation: C, C-t-+

Graphic User Interface:

Cost:

XllR4
XllR5 for KSR1

$16,000 for GIST + ProfView on the

TC2000 / GP1000. On KSR-1, the cost
is bundled with the machine. Pricing
for Sun and HP will be released.

- 110-

Supplier:

Contact:

See reference 99

BBN Systems and Technologies
and Kendall Square Research

David Rich

(617) 873-2634
drich@bbn.com

Steve Breit

(800) 669-1577
sbreit@ksr.com

111 -

3.3.6 AIMS (The Ames InstruMentation System)

Functions:

• A source code instrumentor which automatically inserts event recorders
into program source code before compilation

• A run-time performance monitoring library which collects performance data

• A visualization tool-set which reconstructs program execution based on
the data collected

• Being incorporated into the run-time environments of various parallel
testbeds to evaluate their impact on user productivity

Evaluation:

(By Diane Rover and Joan Francioni of Michigan State University) 105

Strengths:

• Compared with ParaGraph, AIMS offers greater control over the
simulation replay, and a more flexible user interface

Weaknesses:

• More complicated than ParaGraph

Useful to NAS: Maybe

(User experience needed)

Platforms: Monitors the execution of applications

on the iPSC/860 and iPSC/Delta
The graphical interface on SunSparc and SGI

Operating System: NX

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 107

XllR5 and Motif

None

NASA Ames Research Center

Jerry Yah

(415) 604-4381
j erry@ptolemy.arc.n asa.gov

- 112-

3.3.7 PABLO PERFORMANCE ANALYSIS ENVIRONMENT

Functions:

• A Motif-based interface for the specification of source code

instrumentation points (both trace and count data)

• A C parser that can generate instrumented application source code

• A performance data trace capture library for single processor Unix
systems and for the Intel iPSC/2 and iPSC/860 hypercubes

• A self-documenting data metaformat and associated tools that can be
used to describe and process diverse types of data

• A graphical performance analysis environment

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Maybe
(User experience needed)

Trace generation on Intel iPSC/2 and
iPSC/860, Sun, (working on CM5)
Visualization on SPARC2-GX

SunOS 4.1.2 for visualization

C, (working on Fortran)

Languages Used in Implementation: C (GNU g++/gcc 2.3.1 or ATT Cfront version 3.0.1)
perl 3.0

Graphic User Interface: XllR5 (patch level 19), Motif release 1.2.1

Cost: None (license required for commercial use)
ftp bugle.cs.uiuc.edu (128.174.237.148)

Supplier: University of Illinois at Urbana Champaign

Contact: Daniel A. Reed

pablo_bugle.cs.uiuc.edu

See reference 108

- 113 -

3.3.8 IPS-2

Functions:

• Performance monitoring, analysis, and visualization

• Critical path analysis and visualization

• Support for the analysis of multiple applications and multiple runs of
the same application in a single measurement session

• Support for dynamic on-the-fly user selection of what performance data
to collect with decision support to assist users with the selection and
presentation of performance data

Useful to NAS: Maybe

(User experience needed)

Platforms: Y-MP, Sequent Symmetry, Sun (SunOS 4.1,
Solaris 2.0), DECstation

Operating System: UNIX

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 109 110 111

XII

$300 for source

No charge to universities

Univ. of Wisconsin

Barton P. Miller

(608) 263-3378
bart@_cs.wisc.edu

- 114 -

3.3.9 FALCON

Functions:

• A tool for on-line monitoring and visualization of programs using
a parallel cthreads library on shared-memory machines

• A view specification language:

• Specifying sensors
• Predefined collection of probes, sensors, and views

• Interactive program instrumentation:

• Software sensors for generating trace data synchronously
with the program execution

• Software probes for generating trace data only in response
to an asynchronous request by the user or the monitoring system

• Trace Visualization:

• Animated graphical displays of the program run-time performance
and behavior (generated with the POLKA program animation system,
see entry for POLKA)

• Built-in graphical views
• User-defined views

Useful to NAS: No at present time
Maybe in the future

(User experience needed,
Does not support Fortran)

Platforms: KSR-1, Sequent Symmetry, GP-1000 BBN Butterfly,
Silicon Graphics multiprocessor, SPARC

Operating System: SUN OS, Machl000

Languages Supported: C

Languages Used in Implementation: C and C++

Graphic User Interface: XllR4, Open windows

Cost: None

Supplier: College of Computing
Georgia Institute of Technology

Contact:

Seereference 112

- 115-

Weiming Gu

(404) 894-3982
weiming@ee.gatech.edu

Karsten Schwan

(404) 894-2589
schwasa@cc.gateeh.edu

- 116-

3.3.10 VOYEUR

Functions:

• Library routines for trace generation and inspection

• Compiler option for parallel program profiling

• Run time statistics for performance analysis:

• Amount of code running in parallel and serial
• Performance prediction for a program on other Convex systems

Useful to NAS: No

(User experience needed,
Does not support NAS parallel platforms)

Platforms: All Convex Series of Supercomputers

Operating System: CONVEXOS

Languages Supported: Fortran, C

Languages Used in Implementation: Fortran

Graphic User Interface: None

Cost: None

Supplier: Convex Computer Corp.
European Headquarters
Randalls Research Park

Randalls Way
Leatherhead, Surrey
KT22 7TS

United Kingdom

Contact: Ronald W Gray

(44) 372-386696
gray@convex.com

117 -

3.3.11 UPSHOT

Functions:

• Analysis of execution trace produced by parallel programs

• Graphical tool for visualizing parallel program behavior

• Individual events and process states on parallel time lines
• Dynamic histogramming of state durations
• Primitive proportional-time animation
• Summary and detail information
• Zooming in and out and scrolling back and forth

Useful to NAN: Maybe

(User experience needed)

Platforms: Sun, SGI, RS-6000, DEC

Operating System: Supported by the platforms

Languages Supported: C, Fortran, Aurora Parallel Prolog, PCN

Languages Used in Implementation: C, with Athena widgets

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 113

XllR4 or later

None

ftp info.mcs.anl.gov
directory pub/upshot,
files upshot.tar.Z and alog.tar.Z

Argonne National Laboratory

Rusty Lusk

(708) 252-7852
lusk@mcs.anl.gov

- 118-

3.3.12 MARITXU

Functions:

• A set of tools for visualizing massive amounts of trace data

• A trace-file format converter that converts an existing trace to the
format acceptable by Matrtxu

• Animation of dynamic evolution through time

• Usage of processor resources (CPU load, queues, memory,

link communication)

• Current communication

• Topology of the network/subnetwork

• Information discrimination based on importance

• Highly scalable visualization for shared-memory and message-passing
multiprocessors, and for distributed computing (by applying recent
psychology discoveries in human perception to data presentation)

• A Set-up Manager for the user to set preferences, define icons,
map data, determine topology, define statistics, and for defining
the interface between the monitoring tool and Maritxu

Useful to NAS: Maybe
(User experience needed)

Platforms: Mips RS3260, MIPS 2030, SGI Indigo,

SGI 4D/340S

Operating System: UNIX

Languages Supported: Supported by Transputers and CM2

Languages Used in Implementation: C

Graphic User Interface: XllR4, Motif 1.1

Cost: TBD

Supplier: Computer Systems Engineering
Dept. of Electronics
University of York
Heslington - York YO1 5DD
England

Contact: Eugenio Zabala
+ 44 904 432381

e-mail: ez_ohm.york.ac.uk

- 119-

Seereference 114115116

- 120-

3.3.13 GPMS (General Parallel Monitoring System)

Functions:

• Trace generation, filtering and transportation

• Visualization with a customized version of ParaGraph
(see entry ParaGraph)

Useful to NAS: No

(User experience needed,
Does not support NAS platforms)

Platforms: Transputer networks
Transputer÷i860 networks

Operating System: Trollius

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: XllR4

Cost:

Supplier:

Contact:

None

Trollius

Ohio supercomputer center,
OH, USA

ARCHIPEL

PAE des glaisins
74940 Annecy le vieux
÷33 5064 0666

gdburns@tbag.osc.edu

Bernard Tourancheau

Bernard.Tourancheau@lip.ens-lyon.fr

- 121 -

4. Parallelization Tools

Nine tools presented in this part are to assist in converting a sequential pro-
gram to a parallel program. Three different approaches to the conversion process
are used. Section 4.1 lists the automatic conversion tools with user directives

accepted for batch processing. Section 4.2 presents the interactive conversion
tools which interact with users during a conversion process. The tools in the
above sections use compiler analysis and transformation techniques to
locate/create parallelism in a sequential code. The tools described in Section 4.3
provide means for the user to specify parallelism in a program; the tools do not
attempt to discover parallelism.

- 122-

4.1 Automatic Compilation

4.1.1 CRAY/fpp

Function:

• Automatic DO-loop parallelization

• Code transformation to take advantage of CRAY architecture

Evaluation:

(By Doug Pase and Katherine Fletcher through use)

• User interface is batch oriented.
• Uses static program analysis only.

Useful to NAS:

Platforms:

Operating System:

Language Supported:

Graphic User Interface:

Cost:

Supplier:

See reference 117 118

None

Yes

CRAY machines

UNICOS, COS

Fortran

Bundled with system

Cray Research

- 123-

4.1.2 KAP/CRAY

Function:

• Automatic DO-loop parallelization

• Code transformation to take advantage of CRAY architecture

Evaluation:

(By Doug Pase and Katherine Fletcher through use)

• User interface is batch oriented.

• Uses static program analysis only.

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Graphic User Interface:

Cost:

Supplier:

Contact:

No

(Provides similar functions

as provided by fpp)

Y-MP, X-MP, Sun, Vax

UNICOS, COS, UNIX, Ultrix

Fortran

None

First copy $7,500/yr
Add'l copy $3,750/yr
Site license $15,000/yr

Kuck and Associates

Davida Bluhm

(217) 356-2288

See reference 118

- 124 -

4.2 Interactive Parallelization Tools

4.2.1 FORGE 90

Functions:

• A tool set for interactively parallelizing Fortran loops

• Analysis tools:

• Intra-procedural and inter-procedural dependency analysis
• Flow analysis

• Tools for viewing the results provided by the analysis tools:

• Reference tracing of variables and constants (use-def and
def-use chains)

• Exposing COMMON and EQUIVELENCE aliasing and COMMON
block inconsistencies

• Control and data flow from a global perspective

• In/out data dependencies between routines, basic code blocks,
or arbitrary blocks

• Parallelization of do-loops with/without subroutine calls

• Parallel/vector directives insertion for shared-memory parallel
machines

• Support for interactive user data decomposition

• Generation of Fortran programs with message passing for
distributed-memory machines

• Automatic program instrumentation and parailelization guided by
run time statistics

• A database of static information of a program

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

Strengths:

• Very useful for traipsing through old dusty deck Fortran codes
• Its timing profile down to the loop level is very helpful
• Reliable and very responsive vendor support
• Highly recommended

Weaknesses:

• Does not parallelize certain loops that can be parallelized by PAT

125-

(By Doreen Cheng of NASA Ames Research Center)

Applications:

NAS Benchmarks on dedicated Y-MP/8.
Forge version 7.01, 1990

Strengths:

• The interactive nature provides convenient access to
the tools and to information about the program.

• Useful in helping understanding a program developed by others
• Useful in achieving speedup without rewriting a program
• The most robust system in its kind.
• The user response time is reasonably fast.
• Responsive vendor support.

Weaknesses:

• Requires familiarity of compiler analysis terminology.

Suggestions:

• Code generation must take advantage of target architectures.
• Guidance to dependence elimination, code transformation and

parallelization will be very helpful.

Useful to NAS: Yes

Platforms: Generates code for:

CRAY Y-MP, Intel iPSC/860, Delta,
Paragon, CM2, CM5, Clustered
Workstations using PVM or Express.

Runs on all Suns, IBM RS/6000,
SGI, HP workstations, IBM Power/4

Operating System: Unix any flavor

Languages Supported: Fortran 77 and Fortran 90, HPF

Languages Used in Implementation: C

Graphic User Interface: Sunview, X-window (native, motif), Openlook

Cost: Start at

$1850 for source code browser

$4250 for shared memory parallelizer
$6250 for distributed memory parallelizer
$7600 for batch HPF parallelizer

Supplier:

Contact:

- 126 -

Applied Parallel Research, Inc.
550 Main Street, Suite I.
Placerville, CA 95667

John Levesque

(916) 621-1600
levesque_}a.psc.edu

Jim Dillon

(916) 621-1600
jed@netcom.com

See reference 119

- 127-

4.2.2 PARASCOPE

Functions:

• An environment for development of parallel scientific programs
written in a shared-memory parallel dialect of Fortran 77.

• Program analysis tools:

• Data dependence analysis
• Control dependence analysis
• Control flow analysis
• Global value numbering
• Static single assignment
• Basic Fortran static semantic analysis
• Interprocedural analysis

• Program transformation tools:

• Reordering transformations:

• Loop distribution, interchange, skewing, fusion, reversal
• Statement interchange

• Dependence breaking transformations:

• Privatization, scalar expansion, array renaming
• Loop splitting, peeling, alignment

• Memory optimizing transformations:

• Strip mining, loop unrolling, scalar replacement,
unroll and jam

• Others:

• Sequential to parallel loops, statement addition
and deletion, loop bounds adjustment

• The ParaScope Editor (PED):

• Text editing
• Template-based structure editing of Fortran modules
• Access to the results generated by the program analysis tools
• User-guided program transformation to exploit and reveal

parallelism

- 128-

• A debugging system:

• Automatic instrumentation of parallel Fortran programs for

shared-memory multiprocessors to detect data races
• Support for parallelism in the form of nested parallel loops
• Interprocedural analysis to guide placement of instrumentation

to minimize run-time overhead

• Data race report in the form of a pair of references highlighted
in the source code

• The prototype Fortran D compiler:

• Translates Fortran programs annotated with data layout and
distribution directives to Fortran program with message passing
for distributed memory multiprocessors.

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

Strengths:

• Useful in finding data dependencies in parallel loops

Weak nesses:

• Difficult for users to figure out what to do if there are
dependencies

• Does not generate parallel code for our platforms

Useful to NAS: Maybe for tool development

Platforms: ParaScope is supported on the Sun4
and RS6000 platforms.
The Fortran D compiler generates code

for the IPSC/860.
PED generates code for the Sequent and the Cray.

Operating System: Sun OS 4.x on Sun4's , AIX 3.2 on RS6000's

Languages Supported: Fortran 77 + extensions for expressing parallel loops

Languages Used in Implementation: C, C++, Yacc, Lex

Graphic User Interface: XllR4

Cost: $150 for site license

- 129-

Supplier:

Contact:

Rice University
CITI/SDC
P.O. Box 1892
Houston, TX 77251-1892
(713) 527-6077

Sendemail messageswith subjects "send license"
and "send catalog" to softlib@cs.rice.edu
to receiveinformation on how to get ParaScope

Seereference 120 121 122

- 130-

4.2.3 PAT (Parallelization AssistanT)

Functions:

• A tool set for interactively parallelizing loops in Fortran programs

• Program analysis:

• Intra-/inter-procedural control dependency analysis
• Intra-/inter-procedural data dependency analysis
• Flow analysis
• Loop analysis

• Program transformation:

• Alignment, replication, expression substitution

• Code/declarations generation for parallel loops
• Explicit synchronization insertion (events and locks)

• Interactive parallelization:

• Display of program structure (subroutines and loops)
• Loop parallelizability classification
• Sequential to parallel loop conversion

• Program instrumentation:

• Timing calls insertion around selected loops
• Trace generation
• Display for statistics of loop counts and runtimes

Evaluation:

(Donna Bergmark of Cornell Theory Center)

Strengths:

• Useful in finding data dependencies in parallel loops
• Generate parallel code from serial Fortran code.
• X-Window based user interface is convenient.

• Easy to learn
• Recommended

Weaknesses:

• Requires understanding of dependency analysis.
• GUI not robust enough

Useful to NAS: Maybe

(User experience needed)

- 131-

Platforms: Pat runs on SUN, IBM, DEC, HP,
SGI workstations
Generatescodefor
KSR-1, IBM 3090, Sequent,Cray Y-MP

Operating System: UNIX

LanguagesSupported: Full Fortran 77, with KSR directives
and IBM Parallel Fortran.

Languages Used in Implementation: C and C+÷

Graphic User Interface: XllR4

Cost: Free for non-commercial use includes reuseable

data structure class components.
anonymous ftp from: ftp.cc.gatech.edu

in directory pub/pat

Supplier: Georgia Institute of Technology

Contact: Bill Appelbe

(404) 894-6187
bill_cc.gatech.edu

See reference 123 124 125

- 132-

4.2.4 TINY

Functions:

• A research/educational tool for experimenting with array data
dependence tests and reordering transformations

• Dependency analysis:

• Induction variable recognition

• Choice of: Omega test, Power test, Lambda test, Banerjee's
inequalities

• With Omega test:

• Reduction dependences
• Array kill analysis
• Analysis of when assertions can eliminate a dependence

• Program transformations:

• Array & scalar expansion and privatization
• Scalar forward substitution

• Storage classes

• Loop interchange/skewing/distribution/fusion

• A graphic user interface for browsing the results of analysis and
transformations

• A framework for reordering transformations which can be used to

optimize code fragments for parallelism and/or locality

Useful to NAS: Maybe for tool development

Platforms: Unix platforms

Operating System: UNIX

Languages Supported: Tiny (A toy language developed

by Michael Wolfe of 0GI)

Languages Used in Implementation: C

Graphic User Interface: Xterm g_ curses interface

Cost: None

anonymous ftp from ftp.cs.umd.edu
in pub/omega

Supplier: Department of Computer Science
University of Maryland

Contact: omega@cs.umd.edu

- 133-

See reference 126 127 128

- 134 -

4.3 User-Specifying Parallelism

4.3.1 SCHEDULE

Function:

• A large-grain dataflow language for expressing dependencies between
code blocks written in Fortran

• A graphic user interface for specification and visualization

• Performance tools:

• Program profiling
• Execution monitoring
• Memory access visualization
• Program execution visualization
• Critical path determination

• Task scheduling

• Dynamic load balancing

Evaluation:

(By Donna Bergmark at Cornell National Supercomputer Facility)

• Obsolete and being decommissioned
• Received very little use

Useful to NAS:

Platform:

Operating System:

Languages Supported:

No

(User experience needed,
Does not support NAS platforms)

CRAY-2

UNIX

Fortran

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 129 130

XllR4

None

University of Tennessee

Jack Dongarra
(615) 974-8295
dongarra@cs.utk.edu

- 135-

4.3.2 PYRROS

Functions:

• A task graph language for specifying the operations of tasks and the

data dependencies between them. (The tasks are written in C.)

• A graphical interface for displaying task dependencies

• A scheduler for mapping tasks with arbitrary precedence to processors
and ordering their execution

• A graphical interface for displaying the schedule

• A code generator for producing parallel C codes with communication
primitives based on the schedule

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

No

(User experience needed,
Does not support Fortran,

Does not support NAS platforms)

SUN Generates code for nCUBE-II

(working on Intel iPSC/860)

UNIX or others that support C

C

Languages Used in Implementation: C

Graphic User Interface:

Cost:

X window is optional, graph displayer
needs proprietary ATg_T DAG system

None

Supplier: Department of Computer Science
Rutgers University

Contact: Tao Yang
(90S)-932-0050
tyang_cs.rutgers.edu

Apostolos Gerasoulis

(908)-932-2725
gerasoulis@cs.rutgers.edu

See reference 131

- 136-

4.3.3 ENTERPRISE

Functions:

s A graphic user interface for specifying large-grain (functional)
parallelism in C programs (in terms of "assets n such as departments,
services, workers, and divisions)

• A preprocessor to generate (from the graphical specification) a C
program with parallel functions and message passing between them

• Support for non-blocking function calls until the caller accesses
a result that needs to be returned by the callee (futures)

• Automatic source control

• Limited debugging/performance monitoring

• Animation of a program

Useful to NAS:

Platform:

Operating System:

Languages Supported:

execution at message-passing level

No

(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Sun

UNIX

C

Languages Used in Implementation: Smalltalk, C, C++

Graphic User Interface: Smalltalk running under X windows

Cost: In alpha test stage

Supplier: Department of Computing Science
University of Alberta
Canada

Contact: Jonathan Schaeffer

(403) 492-3851
jonathan_cs.ualberta.ca

See reference 132 133

- 137-

5. Others

Ten tools are included in this part. Section 5.1 presents the meta-tools
(tools for building tools). Section 5.2 lists the tools to make it more effective to
compute on a network of workstations. Section 5.3 describesthe tools for grid
partitioning, task schedulingand load balancing.

- 138-

5.1 Tools for Building Tools

5.1.1 SAGE

Functions:

• A programming language transformation toolkit used to design
restructuring source-to-source compilers and instrumentation packages

• A complete parser for Fortran 77, Fortran 90, C (ansi and k_r),
C÷+ Att 2.0 and 3.0

• A common internal representation, a library of C functions, and a
C÷+ class library to access and restructure the internal representation
and to generate the output code

• A comment based annotation language to allow transformation access
to user assertions

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Maybe for tool development

Sun, HP, NEXT, SGI and DEC workstations

(Porting on CM-5, Paragon, KSR, n-Cube,
Mieko, Tera, Cray)

UNIX

Fortran77, Fortran 90, C, C÷÷

Languages Used in Implementation: C and C++

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 134

None

None (gnu rules apply)

Indiana University

Dennis Gannon

(812) 335-5184
gannon_cs.indiana.edu

- 139-

5.1.2 IMPROV (Integrated Manipulation of PROgram Visualization)

Functions:

• A meta-tool for fast prototyping of complex visualizations of parallel

software behavior (a next generation of the PARADISE, see next entry)

Support for a formal and complete generalization of the program
visualization procedure, which divides the task into fundamental,
independent modules for specifying the relationships among basic

concepts (Events, Behavior, and Graphics).

Facilities for users to specify details in each module in terms
of objects called "entities", and to define the visualization by
indicating relationships among the entities in different modules

• A textual language for specifying Events and Behavior entities

• A graphical editor for specifying Graphics (It can also be specified
by text.)

• Rules for specifying entity relationships

• Hierarchical entity construction

• Framework for relating entities from different modules

• Scalability to massively parallel software through various abstract
reduction operations.

• Wide range of graphical manipulations based on fundamental graphical
objects, such as points, lines, squares, circles, polygons, etc.

• Syntax-directed editing

• Support for traces of arbitrary formats, event formats integrated with
event entity specification

Useful to NAS: No at present time
Maybe in the future
(User experience needed,

Does not support NAS platforms)

Platforms: Sun3 and Sun4/Sparc workstations

Operating System: UNIX

Languages Supported: No specific language requirements or support
Trace formats defined by the user with the
Event entities, ascii and binary

- 140-

Graphic User Interface:

Cost:

Supplier:

Languages Used in Implementation: C

XllR4 (or later)

None (with license agreement)

Department of Electrical & Computer Engineering
University of Iowa

Contact: James Arthur Kohl

(319) 335-6432
kohl@hitchcock.eng.uiowa.edu

Thomas L. Casavant

(319) 335-5953
tomc@hitchcock.eng.uiowa.edu

See reference 135 136 137

- 141 -

5.1.3 PARADISE

(PARallel Animated Debugging and Simulation Environment)

Functions:

• A meta-tool for designing program visualization tools for debugging
and performance tuning of parallel software

• Facilities for users to designs an abstract visual model of parallel
program behavior

• Defining "visual objects" using programmed modules that
describe their functionality and interfaces.

• Connecting visual objects using a graphical interface to
form the overall structure of the visual model.

• Tools for replaying parallel program execution traces

• Tools for simulating program behavior and animating it via the
visual model

• Variable animation and simulation speeds

Point-and-click to identify internal states of visual objects and
their interconnections (e.g. details of messages, time stamps, and
the actual data being transferred)

Useful to NAS:

Platforms:

Operating System:

No at present time
Maybe in the future

(User experience needed,
Does not support NAS platforms)

Sun3 and Sun4/Sparc workstations

UNIX

Languages Supported: No specific language requirements. Trace formats
are defined by the user to allow arbitrary
traces to be used (ascii only).

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Sunview or XllR4 (or later)

None (with license agreement)

Department of Electrical & Computer Engineering
University of Iowa

Contact:

- 142-

James Arthur Kohl

(319) 335-6432
kohl_hitchcock.eng.uiowa.edu

Thomas L. Casavant

(319) 335-5953
tomc@hitchcock.eng.uiowa.edu

See reference 138 139 140

- 143-

5.1.4 POLKA

Functions:

• A graphics library for building animations of parallel programs
and their executions

• Primitives for creating smooth, color, continuous program
visualizations and animations

• Primitives for explicitly building animations with concurrent
actions, thereby helping to illustrate parallelism

• Focused on ease of learning and use by graphics non-experts

Useful to NAS" Maybe for tool development

Platforms: Unix workstations

Operating System: UNIX

Languages Supported: C++

Languages Used in Implementation: C++

Graphic User Interface: X Windows and Motif or OLIT

Cost: None

Supplier: Graphics, Viz., and Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Contact: John Stasko

(404) 853-9386
stasko_cc.gatech.edu

See reference 141

- 144-

5.2 Tools for Parallel Computing on A Network

5.2.1 DQS (Distributed Queuing System)

Functions:

• A distributed queuing system for a network of heterogeneous computers

• Support for single and multi-node loosely-coupled batch processing

• Facilities for users to request resource that meet some minimum
performance or architecture specifications

• Facilities for configuring, modifying, deleting, and querying the queues

• Facilities for submitting, monitoring, querying, and terminating
jobs on a single computer or a cluster of computers

• Load balancing for jobs submitted to group queues

• Optional keyboard/mouse activity monitoring (queue suspended if active)

• Parallel jobs using PVM supported in dedicated mode

Useful to NAS: Maybe
(User experience needed)

Platforms: SUN, IBM, SGI, DEC, HP workstations

Operating System: SunOS 4.1.x, AIX 3.2.x, IRIX 4.0.x,
OSF/1,MACH, HPUX, ULTRIX

Languages Supported: All languages supported by platforms

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 142 143

Xll

None

ftp at ftp.scri.fsu.edu

pub/DQS//DQS.REV_2.0.tar.Z

Supercomputing Research Institute
Florida State University

Thomas P. Green

(904) 644-0190
green_scri.fsu.edu

- 145-

5.2.2 FUNNEL

Functions:

• A run time support for SIMD program execution on a network of
heterogeneous workstations

• Manages the data stream for multiple instances of the application

• Fault tolerant in cases of machine crash, no swap space, disk full,
or ethernet down

• Large grain parallelism achieved by providing each instance of a

single-processor application with an environment mimicking the
original

Useful to NAS:

Platforms:

Operating System:

Languages Supported:

Maybe

(User experience needed)

SGI, DECstations

UNIX

Interfaces to executables, not code

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Demo available via anonymous ftp
at zebra.desy.de

Supplier: ZEUS Collaboration

Deutsches Elektron-Synchrotron (DESY)
Hamburg, Germany

Contact: Burkhard Burow
49-40-8998-3053

burow@vxdesy.cern.ch

- 146-

5.2.3 DJM (The Distributed Job Manager)

Functions:

• A job control system that manages the execution of user
applications on Connection Machines

• Facilities to submit, monitor, and terminate jobs

• Facilities to query the status of jobs

• Commands for specifying the number of processors and the
amount of memory and disk space required

• Scheduling jobs to achieve balanced the load on CM partitions

• Scheduling jobs to achieve balanced the load on CM front-end

• Facilities for switching the direction of input/output
streams of a job between screen/keyboard and a file

Useful to NAS: Maybe
(Under evaluation at NAS
User experience needed)

Platforms: CM2, CMb, SUN

Operating System: Provided by the platforms

Languages Supported: Supported by the platforms

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier:

Contact:

See reference 144

ftp ec.msc.edu
/pub/LIGHTNING /dj m_0.9.11. Z

Minnesota Supercomputer Canter, Inc.

Alan Klietz

(612) 626-1737
alan@msc.edu

- 147-

5.2.4 CONDOR

Functions:

• A distributed batch system for recovering idle cycles of a
network of workstations

• Job-level parallelism only

• Monitoring the activities of participating workstations

• Scheduling jobs to idle workstations

• Suspending/migrating foreign jobs when the owner of a
workstation starts using it

• Fault-tolerance (with restrictions):

• Checkpointing
• Process migration

• Protection of owner's files from executing foreign jobs

• Direct NFS access and remote system calls for executing
programs to access remote files

• Redirection of file I/O to the submitting machine

Useful to NAS: Maybe

(User experience needed,
Mechanisms to handle parallel

applications needed)

Platforms: Suns, SGI, Snakes(hp), DecStations, 6K

Operating System: UNIX BSD 4.2 and 4.3

Languages Supported: All languages supported by the platforms

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

None

None

ftp ftp.cs.wisc.edu

Computer Science Department
University of Wisconsin, Madison

Miron Livny

(SOS) 262-0856
miron@cs.wisc.edu

- 148-

Seereference 145 146

- 149-

5.2.5 MNFS (Modified NFS)

Functions:

• A modified NFS system for supporting shared-memory programs on a
network of workstations:

• Supports shared memory for mapped files
• Support for user-managed consistency of mapped pages
• An additional address space with 32-byte pages for efficiency
• Additional extensions to support efficient data sharing and

program synchronization in the high-latency environments
found in computer networks.

• Better performance than NFS

• Provided as a mod-loaded module, i.e. it runs as part of the kernel
but is dynamically loaded after the OS is booted. No OS recompilation
or rebuilding is required. (A modified NFS daemon is also provided,
as is an automounter that mounfs MNFS file systems.)

Useful to NAS:

Platforms:

Operating System:

No at present time
Maybe in the future

(User experience needed,
Does not support all NAS platforms)

Sun workstations (including MPs)
(386BSD, IRIX in progress)

SunOS 4.1.1, 4.1.2, 4.1.3

Languages Supported: C, Fortran77,

Any language that can open a file and do mmap()

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Supercomputing Research Center,
17100 Science Drive,
Bowie, MD. 20716

Contact: Ron Minnich

(301)-805-7451
rminnich @super.org

See reference 147 148 149

- 150 -

5.3 Partitioners and Schedulers

5.3.1 TOP/DOMDEC (DOMain DEComposition)

Functions:

• A tool for mesh partitioning in parallel processing

• Algorithms for initial automatic mesh partitioning

• The Greedy Algorithm
• The RCM algorithm
• A recursive RCM algorithm
• Slicing (Principal Inertia) algorithms (Ix, Iy, Iz)
• Recursive versions of the Slicing algorithms (RIx, RIy, RIz)
• Frontal Algorithm for 1D Topology partitions
• Recursive Graph Bisection
• Recursive Spectral Bisection

• Support for optimizing the items listed below over the initial
partitioning

• Size of the interface

• Frontwidth of the subdomain (for direct frontal solvers)
• A product of the above two items
• Node-wise load balancing
• Element-wise load balancing
• Edge-wise load balancing

• Algorithm used in optimizing the component of the mesh that is
neighboring the interface

• Tabu Search

• Simulated Annealing
• Stochastic Evolution

• Support for decision making in selecting the best mesh partition
for a given problem and a given multiprocessor

• Support for evaluation of load balancing, network traffic and
communication costs

• Generation of parallel data structures needed for local computations
and for message passing

• Object oriented high-speed graphics for user interface

Useful to NAS: Maybe

(User experience needed)

Platforms: Runs on SGI, IBM R6000 with the GL card
Generates partition for CRAY Y-MP, KSR,
iPSC-860, and CM-2

151 -

Operating System: UNIX

Languages Supported: Fortran, C++

Languages Used in Implementation: C++ and GL

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 150

GL

$250 for source license

PGSoft, 5212 Pinehurst Drive
Boulder, CO 80301

Charbel Farhat

Phone (303) 492-3992
charbel_alexandra.Colorado.EDU

- 152-

5.3.2 GANG SCHEDULER

Functions:

• Support for fair sharing of time and space on the BBN TC2000

• Allocation of processors and requests for benchmarking time

• Four priority queues

Useful to NAS:

Platform:

Operating System:

Languages Supported:

No

(User experience needed,
Does not support NAS platforms)

BBN TC2000

UNIX

C, Fortran, PCP, PFP, Uniform Systems, Zipcode

Languages Used in Implementation: C

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 151

vtl00 display

None

Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Brent Gorda

(510) 294-4147
brent@igor.nersc.gov

- 153-

5.3.3 BLOBS

Functions:

• A visualization tool for interactive evaluation of alternative load

balancing strategies through simulation

• Designed for computations involving particles only

• Facilities for users to control number of processors, partitioning
method, and partitioning frequency

• Tools to estimate and display the problem partitioning, interprocessor
communication costs, workload distribution across the processors, and
overall parallel efficiency based on the user input and a sample trace
of a execution

Useful to NAS:

Platforms:

Operating System:

No

(User experience needed,
Does not support all NAS platforms,
For particle methods only)

Sparcstation running openwindows

UNIX

Languages Supported: Accepts a blobs-specific trace format.

Languages Used in Implementation: C

Graphic User Interface: Xview and OpenWindows libraries

Cost:

Supplier:

Contact:

None

anonymous ftp cs.ucsd.edu
in pub/baden/blobs

University of California at San Diego

Prof. Scott B. Baden

(619) 534-8861
sbaden_ucsd.edu

Scott Kohn

(619) 534-5913
skohn@ucsd.edu

See reference 152

- 154-

5.3.4 PREP-P (PREProcessor for Poker)

Functions:

• Static partitioning, placing, routing and scheduling for function-parallel

programs

• Simulation of parallel execution using Poker (Poker is no longer supported
by University of Washington)

Useful to NAS: No

(User experience needed,
Does not support Fortran,
Does not support all NAS platforms)

Platform: Sun3 and Sparc workstations

Operating System: UNIX

Languages Supported: X:X (a simple abstraction of C)

Languages Used in Implementation: C, assembly language

Graphic User Interface:

Cost:

Supplier:

Contact:

See reference 153

Required by Poker

None

Parallel Computation Lab
Department of Computer Science and Engineering
University of California, San Diego

Francine Berman

(619)534-6195
berman_cs.ucsd.edu

- 155-

Acknowledgements

I would like to express my gratitude to all the people who submitted
descriptions of their tools and/or shared with me their experience of using tools.
I also would like to thank reviewers Tom Woodrow, Louis Lopez and Bernard
Traversat for their comments.

- 156 -

References

1. Glenn Kubena, Kenneth Liao, and Larry Roberts, White Paper on Massively

Parallel Programming Languages, IBM, Dec. 3, 1992.

2. Thomas Sterling, Paul Messina, Marina Chen, Frederica Darema, Geoffrey
Fox, Michael Heath, Ken Kennedy, Robert Knighten, Reagon Moore, Sanjay
Ranka, Joel Saltz, Lew Tucker, and paul Woodard, "System Software and
Tools for High Performance Computing Environments," A Report on the
Findings of the JPL Pasadena Workshop, April, 1992.

3. ISO/IDE, "Information technology - Programming languages - Fortran,"
International Standard, Reference number ISO/IEC 1589 : 1991 (E), 1991.

4. High Performance Fortran Forum, High Performance Fortran Language
Specification, Version 1.0 Draft, Jan. 25, 1993.

5. ANSI Technical Committee X3H5, Parallel Processing Model for High Level

Programming Languages, June 1992.

6. ANSI Technical Committee X3H5, Parallel Fortran Standard, 1992.

7. ANSI Technical Committee X3H5, Fortran Binding -- Data Model Section,
1992.

8. T. Brandes, "Efficient Data Parallel Program without Explicit Message Pass-
ing for Distributed Memory Multiprocessors," GMD Technical Report,

TR92-4, 1992.

9. L. Ridgway Scott, "Pfortran: a parallel dialect of Fortran," Fortran Forum

11, vol. No. 3, pp. 20-31, Sept.1992.

10. Harry Jordan, "The Force," ECE Tech. Report 87-1-1, Jan. 1987.

11. Harry F. Jordan, Muhammad S. Benten, Norbert S. Arenstorf, and Aruna
V. Ramanan, Force User's Manual, March 1989.

12. Donna Reese, "Object-Oriented Fortran for Portable, Parallel Programs,"
The Third IEEE Symposium on Parallel and Distributed Processing, pp.

608-615, December 1991.

13. B.Chapman, P.Mehrotra, and H.P.Zima, "Vienna FORTRAN - A Fortran
Language Extension for Distributed Memory Multiprocessors," in Compilers
and Runtime Software for Scalable Multiprocessors, ed. J. Saltz and P.
Mehrotra, Elsevier, Amsterdam, 1991.

14. P.Brezany, B.Chapman, and H.Zima, "Automatic Parallelization for
GENESIS," Austrian Center for Parallel Computation, Technical Report

A CPC/TR 9e--16, November 1992.

15. B.M.Chapman, P.Mehrotra, and H.Zima, "Programming in Vienna For-
tran," Scientific Programming, vol. Vol.1, No.l, 1992.

16. Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng, "Compiling For-
tran D for MMD Distributed-Memory Machines," Communications of the

ACM, vol. 35(8), pp. 66-80, August 1992.

17. Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich
Kremer, Chau-Wen Tseng, and Min-You Wu, "Fortran D Language
Specification," Dept. of Computer Science Technical Report TR90-141, Rice
University, December 1990.

18. I. Foster and K. M. Chandy, "Fortran M: A Language for Modular Parallel

Programming," Preprint MCS-PgP.7-0992, Argonne National Laboratory,
Argonne, HI, 1992.

- 157-

19. P. Newton and J. C. Browne, "The CODE 2.0 Parallel Programming
Language," Proe. ACM International Conf. on Supereomputing, July 1992..

20. A. Reuter, U. Geuder, M. Haerdtner, B. Woerner, and R. Zink, "The GRIDS
Project," Technical Report, University of Stuttgart, 1992.

21. Eugene Brooks, Brent Gorda, and Karen Warren, "The Parallel C Prepro-
cessor," in Scientific Programming, vol. vol 1, Number 1, John Wiley gc
Sons, Inc., New York.

22. Brent Gorda, Karen Warren, and Eugene D. Brooks III, "Programming in
PCP," Technical Report, Lawrence Livermore National Laboratory, UCRL-
MA-IOTOP,9, April 1991.

23. Brent Gorda, "Data Parallel Programming," Spring Proceedings, 1992 Cray
User Group.

24. Eugene D. Brooks et al., "The 1992 MPCI Yearly Report: Harnessing the
Killer Micros," Lawrence Livermore National Laboratory, UCRL-ID-107022-
92, March 1991.

25. M. C. Rinard, D. S. Scales, and M. S. Lam, "Heterogeneous Parallel Pro-
gramming in Jade," Proceedings of Supercomputing '92, pp. 245-256, Nov.
1992.

26. M. S. Lam and M. C. Rinard, "Coarse-Grain Parallel Programming in
Jade," Proceedings of the Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 94-105, April, 1991.

27. M. C. Rinard and M. S. Lam, "Semantic Foundations of Jade," Record of
the Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pp. 105-118, Jan., 1992.

28. L.V. Kale, "The Chare Kernel Parallel Programming Language and Sys-
tem," in: Proc. of the International Conference on Parallel Processing, Aug.
1990.

29. L.V. Kale, "A Tutorial Introduction to Charm," Parallel Programming
Laboratory Internal report, 1992.

30. Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver, "The DINO
Parallel Programming Language," Tech. Report CU-CS-g57-gO, CS Dept.
Univ. of Colorado at Boulder, April 1990.

31. Thomas M. Derby, Elizabeth Eskow, Richard Neves, Matthew Rosing,
Robert B. Schnabel, and Robert P. Weaver, "DINO 1.0 User's Manual,"
Tech Report CU-CS-501-90, CS Dept. Univ. of Colorado at Boulder, April
1990.

32. Min-You Wu and Daniel D. Gajski, "Hypertool: A Programming Aid for
Message-Passing Systems," IEEE Trans. on Parallel and Distributed Systems,
vol. 1 No. 3, pp. 330-343, July 1990.

33. Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and
Shelby Yang, "Distributed pC++: Basic Ideas for an Object Parallel

Language," Proceedings of Supercomputing 91 (Albuquerque, Nov. 1991),
IEEE Computer Sciety and A CM SIGARCH, pp. 273-282.

34. A. S. Grimshaw, "Easy to Use Object-Oriented Parallel Programming with
Mentat," to appear in IEEE Computer, May 1993.

35. A. S. Grimshaw, W. Timothy Strayer, and Padmini Narayan, "The Good
News About Dynamic Object-Oriented Parallel Processing," University of
Virginia, Computer Science Report TR-92-_1,, 1992.

- 158-

36. Rohit Chandra, Anoop Gupta, and John L. Hennesy, "Integrating Con-
currency and Data Abstraction in the COOL Parallel Programming
Language," Technical Report CSL-TR-92-511, Computer Systems Lab, Stan-
ford University,, February 1992.

37. Rohit Chandra, Anoop Gupta, and John L. Hennesy, "Data Locality and
Load Balancing in COOL," To Appear in the Symposium on Principles and

Practices of Parallel Programming (PPoPP}, May 1993.

38. Gail E. Kaiser, Wenwey Hseush, Steven S. Popovich, and Shyhtsun F. Wu,
"Multiple Concurrency Control Policies in an Object-Oriented Programming
System," 2nd IEEE Symposium on Parallel and Distributed Processing, Dal-
las TX, pp. 623-626, December, 1990.

39. Steven S. Popovich, Shyhtsun F. Wu, and Gall E. Kaiser, "An Object-Based
Approach to Implementing Distributed Concurrency Control," 11th Inter-
national Conference on Distributed Computing Systems, Arlington TX, pp.
65-72, May, 1991.

40. Wenwey Hseush, James C. Lee, and Gail E. Kaiser, "MeldC Threads: Sup-
porting Large-Scale Dynamic Parallelism," Technical Report CUCS-010-92,
Columbia University, March, 1992.

41. Thomas Braunl, "Structured SIMD Programming in Parallaxis," Structured
Programming Journal, vol. 10/3, 1998.

42. Thomas Brauni, "Parallel Programming," in An Introduction Textbook,
Prentice-Hall, Summer 1993.

43. Walter F. Tichy and Christian G. Herter, "Modulo-2*: An Extension of
Modulo-2 for Highly Parallel, Portable Programs," Technical Report KA-
1NF, No. 4/90, Jan., 1990.

44. Michael Philippsen and Walter F. Tichy, "Modulo-2* and its Compilation,"
First International Conference of the Austrian Center for Parallel Computa-
tion, pp. 169-183, Springer Verlag, September 30 - October 2, 1991.

45. Ian Foster and Stephen Taylor, in Strand New Concepts in Parallel Pro-
gramming, Prentice Hall, 1989.

46. D. Cann, "Retire Fortran? A Debate Rekindled," Communications of the
ACM, vol. Vol 35, Number 8, August, 1992.

47. J. T. Feo, D.C. Cann, and R. R. Oldehoeft, "A Report on the SISAL
Language Project," Journal of Parallel and Distributed Computing, vol. Vol
12 No. 10, pp. 349-366, December 1990.

48. J. R. McGraw and et. al., "Sisal: Streams and iterations in a single-
assignment language, Language Reference Manual, Version 1.2," Lawrence

Livermore National Laboratory Manual M-146 (Rev. 1), March 1985.

49. Lawrence Livermore National Laboratory, "Proceedings of the Second
Annual Sisal Users Conference," Lawrence Livermore National Laboratory
Technical Report UCRL JCl12593, October 1992.

50. I. Foster, R. Olson, and S. Tuecke, "Productive parallel programming: The
PCN approach," Scientific Programming, vol. 1(1), pp. 51-66, 1992.

51. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming,
Jones and Bartlett, 1991.

52. Alan H. Karp, "Some Experience with Network Linda," The International
Journal for High Speed Computing (to appear}, 1993.

53. D. Gelernter, N. Carriero, S. Chandran, and S. Chang, "Parallel Program-
ming in Linda," Proceedings of the 1985 International Conference on

- 159-

Parallel Processing, pp. 255-263, 1985.

54. Sudhir Ahuja, Nicholas Carriero, and David Gelernter, "Linda and
Friends," IEEE Computer, pp. 26-34, Aug. 1986.

55. T. Bemmeri and A. Bode, "An Integrated Tool Environment for program-

ming distributed memory multiprocessors," in Distributed memory comput-
ing, Lecture Notes in Computer Science, ed. A. Bode, vol. Vol. 487, pp. 130
- 142, Springer-Verlag, 1991.

56. "Manuals on: MMK, TOPSYS, DETOP, PATOP, VISTOP," Technical
Report, Technische Universit"at AC'unehen, 1991.

57. Binay Sugla, John Edmark, and Beth Robinson, "An Introduction to the
CAPER Concurrent Application Programming Environment," 1EEE Confer-
ence on Parallel Processing, 1989.

58. Doug Kimeleman and Dror Zernik, "On-the-Fly Topological Sorting for
Interactive Debugging and Live Visualization of Parallel Programs," To
appear in the Third ACM ONR Workshop on Parallel and Distributed
Debugging, may, 1993.

59. Leonid Gluhovsky and Dror Zernik, "ILGA - A Little Language For Process-
ing Graphs," Technical report No. 872. Electrical Engineering Faculty,
Technion.

60. Gregory R. Andrews and Ronald A. Olsson, The SR Programming
Language: Concurrency in Practice, ISBN 0-8053-0088-0,
Benjamin/Cummings Publishing Company, 1993.

61. G. Sutcliffe and J. Pinakis, "Prolog-D-Linda: An Embedding of Linda in
SICStus Prolog," Technical Report 91/7, Department of Computer Science,
The University of Western Australia, Perth, Australia.

62. H. El-Rewini and T. Lewis, "Scheduling and Performance Evaluation Tool

for Parallel Computing," Proceedings of 4th Annual Symposium on Parallel
Processing, Fullerton, CA., p. 60, April 1990.

63. H. E1-Rewini and T. Lewis, "Scheduling Parallel Program Tasks onto Arbi-
trary Target Machines," Journal of Parallel and Distributed Computing, vol.
Vol 9, pp. 138-153, June 1990.

64. Parasoft Co., Express C User's Guide, Version 8.0, 1990.

65. J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam, "A Users'
Guide to PVM," Technical Report No. ORNL/TM-11826, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 277831-6867, July 1991.

66. V. S. Sunderam, "PVM : A Framework for Parallel Distributed Comput-

ing," Concurrency: Practice and Experience, vol. Vol. 2 No. 4, pp. 315--339,
Dec. 1990.

67. J. J. Dongarra, G. A. Geist, R. Manchek, J. Plank, and V. Sunderam,
"HENCE: A User's Guide Version 1.2," Technical Report, Computer Science
Department, CS-92-157, February 1992.

68. J. J. Dongarra, G. A. Geist, R. Manchek, K. Moore, R. Wade, and V. S.
Sunderam, "HENCE: Graphical Development Tools for Network-Based Con-

current Computers," Proceedings of the Sealable High Performance Comput-
ing Conference IEEE Computer Society Press, pp. 129-136, April 1992, Wil-
liamsburg.

69. Ralph Butler Ewing Lusk, "User's Guide to the p4 Parallel Programming
System," Technical Report, Argonne National Laboratory, Mathematics and
Computer Science Division, ANL-92/17, Oct. 1992.

- 160 -

70. Robert J. Harrison, "Moving Beyond Message Passing: Experiments With A
Distributed-Data Model," Technical Report, Argonne National Laboratory,
1991.

71. M. Fischler, G. Hoekney, and P. Mackenzie, "Canopy 5.0 Manual," Techni-
cal Report, Fermilab.

72. M. Fischler, "The ACPMAPS System - A Detailed Overview," Fermilab
publication FERMILAB- TM-1780 .

73. Fausey, Rinald, Wolbers, Potter, Yeager, Ulifig, "CPS & CPS Batch Refer-
ence Guide," Fermi Computing Division #GAO008.

74. Fausey, Rinaldo, Wolbers, Potter, Yeager, Ullfig, "CPS User's Guide,"
Fermi Computing Division #GAO009.

75. Frank Rinaldo and Stephan Wolbers, "Loosely-Coupled Parallel Processing
at Fermilab," To be published in 'Computers in Physics', March-April 1993.

76. Matthew R. Fausey, "CPS and the Fermilab Farms," FERMILAB-Conf-

92/168, June 1992.

77. Tom Nash, "High Performance Parallel Local Memory Computing at Fermi-
lab," Proceedings of WHP92 on Heterogeneous Processing, Beverly Hills,
Calif, March 23, 1992.

78. L. Bomans, R. Hempel, and D. Roose, "The Argonne/GMD macros in For-
tran for portable parallel programming and theirimplementation on the Intel

iPSC/2," Parallel Computing, North-Holland, vol. Vol. 15, pp. 119-132, 1990.

79. R. Hempel, "The ANL]GMD Macros (PARMACS) in Fortran for Portable
Parallel Programming using the Message Passing Programming Model,"
User's Guide and Reference Manual, Version 5.1, Nov. 1991.

80. R. Hempel, H.-C. Hoppe, and A. Supalov, "PARMACS 6.0 Library Interface
Specification," GMD internal report, Dec. 1992.

81. R. Hempel and H. Ritzdorf, "The GMD Communications Library for Grid-
oriented Problems," GMD Arbeitspapier No. 589.

82. Diane T. Rover and Joan M. Franeioni, "A Survey of PICL and Paragraph

Users (1992)," Technical Report, Department of Electrical Engineering,
Michigan State University (TR-MSU-EE-SCSL-01193), Feb. 1993.

83. G.A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, "PICL, A Port-
able Instrumented Communication Library, C Reference Manual,"

ORNL/TM-11180, July, 1990.

84. A. Quealy, G. L. Gole, and R. A. Bleeh, "Portable Programming on

Parallel/Networked Computers Using the Application Portable Parallel
Library (APPL)," to be published as a NASA TM, 1993.

85. R. Ponnusamy, R. Das, J. Saltz, and D. Mavriplis, "The Dybbuk Runtime
System," Compcon, San Francisco, February 1993.

86. C. Chase, K. Crowley, J. Salts, and A. Reeves, "Parallelization of Irregu-
larly Coupled Regular Meshes," Sixth International Conference on Super-
computing, Washington DC, June 1992.

87. R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy , "The
Design and Implementation of a Parallel Unstructured Euler Solver Using
Software Primitives (AIAA-92-0562),," Proceedings of the $Oth Aerospace
Sciences Meeting, Reno NV, 1992.

88. A. Sussman, J. Saltz, R. Das, S. Gupta, D. Mavriplis , and R. Ponnusamy,
"PARTI Primitives for Unstructured and Block Structured Problems,"

Computing Systems in Engineering (Proceedings of Noor's Flight Systems

- 161 -

100.

101.

102.

103.

104.

105.

106.

107.

conference, pp. 73-86, 1992, 3, 1.

89. R. Kannan, et. al., "Software Environment for Network Computing,"
Workshop on "Heterogeneous Network-Based Concurrent Computing"
SCR1/Florida State University, October 16-18, 1991 also appears in the
newsletter for the IEEE Technical Committee on Operating Systems and
Application Environments, Vol. 6, No. 1, 1992. Also available as a technical
report (CERC-TR-RN-91-007) from CERC, WVU, Morgantown, WV
26505..

90. R. Kannan, C.L.Chen, Michael Packer , and Hawa Singh, "Directory Service
for Group Work," CSCW 92 Tools _ Technologies Workshop, Toronto
Canada. Also available as a technical report (CERC-TR_RN-91-O0_) from
CERC, WVU, Morgantown, WV B6505.

91. Vangati R. Narender and R. Kannan, "Dynamic RPC for Extensibility,"
IEEE International Phoenix Conference on Computers and
Communications-02, Phoenix, Arizona, April 1 -3, 1992.

92. V. Jagannathan, K. J. Cleetus, R. Kannan, J. Toth, and V. Saks, "Applica-
tion Message Interface," IEEE International Phoenix Conference on Com-
puters and Communications-92, April 1 -8, 1992, Phoenix, Arizona..

93. Roland Zink, "The Stuttgart Parallel Processing Library SPPL and the X
Windows Parallel Debugger XPDB," To be presented at the Seventh Interna-

tional Parallel Processing Symposium Parallel Systems Fair, Newport Beach
CA, April 1993.

94. Tommy Welcome, "Programming in LMPS," Technical Report, Lawrence
Livermore National Laboratory, UCRL-MA-IO7OM, March 1991.

95. Scott B. Baden and Scott Kohn, "The Reference Guide to GenMP -- The

Generic Multiproeessor," Technical Report, University of California, San
Diego, Dept. of Computer Science and Engineering, CS92-243, June, 1992.

96. Thinking Machine Co., Prism User's Guide version 1.1, Dec. 1991.

97. MasPar Computer, MPPE User Guide.

98. Digital Equipment Corporation, PARASPHERE User's Guide.

99. BBN Systems and Technologies, Inc., Using the Xtra(TM) Programming
Environme at.

Kendall Square Research, KSR Manual.

Intel Supercomputer Systems Division, iPSC/B and iPSC/860 Interactive
Parallel Debugger Manual, April 1991.

Adam Beguelin, "Xab: A Tool for Monitoring PVM Programs," To appear
HP'9_t, Newport CA, April 199B. Also available as CMU tech report CMU-
CS-9g-105.

Cray Research Inc., UNICOS Performance Utilities Reference Manual SR-
20_0 6.0, pp. 199-234, 1991.

Intel Supercomputer Systems Division, Performance Analysis Tools Manual.

Diane Rover and Joan Francioni, "In process of compiling a report on the
experience of using parallel programming tools," Michigan State University,
1993.

Michael T. Heath and Jennifer A. Etheridge,, "Visualizing the Performance

of Parallel Programs," IEEE Software, vol. Vol. 8, No. 5, pp. 29-39, Sep-
tember 1991.

Charlies Fineman, Philip Hontalas, Sherry Listgarten, and Jerry Yen, A
User's Guide to AIMS, Version 1.1, May, 1992.

- 162 -

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith

A. Shield, and Bradley W. Schwartz, "The Pablo Performance Analysis
Environment," Technical Report, University of Illinois.

Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-
See Lim, and Timothy Torzewski, "IPS-2: The Second Generation of a
Parallel Program Measurement System," IEEE Trans. on Parallel and Dis-

tributed Systems, vol. 1 No. 2, April 1990.

Jeffrey K. Hollingsworth and bart@cs.wisc.edu, "Dynamic Control of Perfor-
mance Monitoring on Large Scale Parallel Systems," Technical Report,
Univ. of Wisconsin-Madison Comp Sci Dept.

R. Bruce Irvin and Barton P. Miller, "Multi-Application Support in a Paral-

lel Program Performance Tool," Univ. of Wisconsin-Madison Comp Sci Dept
Tech Rep #1155.

Weiming Gu and Karsten Schwan, "Falcon: A Monitoring and Visualiza-
tion System for Parallel and Distributed Systems.," Technical Report

GIT-CC-95/11, Georgia Institute of Technology. January 1995. Draft..

Virginia Herrartc and Ewing Lusk, "Studying Parallel Programming
Behavior with Upshot," Argonne National Laboratory Technical Report

ANL-91/15.

Eugenio Zabala and Richard Taylor, "Maritxu: Generic visualisation of
highly parallel processing," in Programming Environments for Parallel Com-
puting, ed. T. Bemmerl, pp. 171-180, Noth-Holland, 1992.

Eugenio Zabala and Richard Taylor, "Process and processor interaction:
architecture independent visualisation schema," Environments and Tools for
Parallel Scientific Computing, 7-8 September, Saint Hilaire du Touvet,

France, 1992.

Eugenio Zabala and Richard Taylor, "Maritxu: Visualising the run-time
behaviour of transputer networks," in Parallel Computing: from theory to
sound practice, Proceedings from EWPC'92, Barcelona, Spain, ed. Elie Mil-

groin, pp. 100-103, IOS Press, March 1992.

Gray Research, Inc., CF77 Compiling System Volume 4: Parallel Processing
Guide.

Douglas M. Pase and Katherine E. Fletcher, "Automatic Parallelization: A
Comparison of CRAY fpp and KAI KAP/GRAY," NASA Ames NAS
Technical Report, RND-O0-010, Nov. 1990.

Applied Parallel Research, FORGE 90 Version 8.0 Baseline System User's
Guide, April 1992.

Alan Carle, Keith D. Cooper, Robert T. Hood, Ken Kennedy, Linda
Torczon, and Scott K. Warren, "A Practical Environment for Scientific Pro-

gramming," IEEE Computer, Nov. 1987.

D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon, "Interprocedural
Constant Propagation," ACM SIGPLAN Notices, vol. 21 No. 7, pp. 152-161,

July 1986.

K. Kennedy, K. S. McKinley, and C. Tseng, "Interactive Parallel Program-
ming Using the ParaScope Editor," TOPDS, vol. 2 No. 3, pp. 329-341, July
1991.

Bill Appelbe and Kevin Smith, "Start/Pat: A Parallel-Programming
Toolkit," IEEE Software, pp. 29-38, July 1989.

Kevin Smith , Bill Appelbe , and Kurt Stirewalt, "Incremental Dependence
Analysis for Interactive Parallelization," ICS, pp. 330-341, June 1990.

- 163-

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

Bill Appelbe , Kevin Smith , and Kurt Stirewalt, "PATCH -- A New Algo-
rithm for Rapid Incremental Dependence Analysis," ICS, pp. 424-432, June
1991.

Michael Wolfe, "The Tiny Loop Restructuring Research Tool," Proe of 1991
International Conference on Parallel Processing,, pp. II-46 - II-53, 1991.

William Pugh, "The Omega test: a fast and practical integer programming
algorithm for dependence analysis," Communications of the ACM 8, pp.
102--114, August 1992.

William Pugh and David Wonnacott, "Eliminating False Data Dependences
using the Omega Test," Teeh. Report CS-TR-2993, Dept. of Computer Sci-
ence, Univ. of Maryland, College Park.

J. J. Dongarra and D. C. Sorensen, "SCHEDULE: Tools for Developing and
Analyzing Parallel Fortran Program," Tech. Memo 86, Argonne National
Laboratory, Nov. 1986.

J. J. Dongarra and D. C. Sorensen, "SCHEDULE Users Guide," Argonne
National Laboratory, June 1987.

T. Yang and A. Gerasoulis, "PYRROS: Static scheduling and code genera-
tion for message passing multiprocessors," Proc. of 6th A CM Inter. Conf. on
Supercomputing, Washington D.C., pp. 428-437, July 1992.

Greg Lobe, Paul Lu, Stan Melax, Ian Parsons, Jnathan Schaeffer, Carol
Smith, and Duane Szafron, "The Enterprise Model for Developing Distri-
buted Applications," TR 92-20, Department of Computing Science, Univer-
sity of Alberta, 1992.

Duane Szafron, Jonathan Schaeffer, Pok Sze Wong, Enoch Chan, Paul Lu,
and Carol Smith, "The Enterprise Distributed Programming Model," Pro-
gramming Environments for Parallel Computing, pp. 67-76, Elsevier Science
Publishers, 1992.

Dennis Gannin, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukkai, Srinivas

Narayana, Neelakantan Sundaresan, Daya Attapatu, and Francois Bodin,
"Sigma II: A Tool Kit for Building Parallelizing Compilers and performance
Analysis Systems," Proceedings 1992, IFIP Edinburgh Workshop on Parallel
Programming Environments. April, 1992 in Programming Environments for
Parallel Computing, IFIP Transactions A-11, N. Topham, R. Ibbet, T. Bem-
merl, eds., North-Holland Press, pp. 17-36.

T. L. Casavant and J. A. Kohl, "The IMPROV Meta-Tool Design Methodol-
ogy for Visualization of Parallel Programs," Invited Paper, International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), January 1993.

J. A. Kohl and T. L. Casavant, "Methodologies for Rapid Prototyping of
Tools for Visualizing the Performance of Parallel Systems," Presentation at
Workshop on Parallel Computer Systems: Software Tools, Santa Fe, New
Mexico, October 1991.

J. A. Kohl, "The Construction of Meta-Tools for Program Visualization of

Parallel Software," Technical Report Number TR-ECE-920204, Department
of ECE, University of Iowa, Iowa City, I_A, 52242, February 1992.

J. A. Kohl and T. L. Casavant, "Use of PARADISE: A Meta-Tool for

Visualizing Parallel Systems," Proceedings of the Fifth International Parallel

Processing Symposium (IPPS), Anaheim, California, pp. 561-567, May 1991.

J. A. Kohl and T. L. Casavant,, "A Software Engineering, Visualization
Methodology for Parallel Processing Systems," Proceedings of the Sixteenth

- 164 -

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

Annual International Computer Software gJ Applications Conference (COMP-

SAC), Chicago, Illinois, pp. 51-56, September 1992.

T. L. Ca.savant, J. A. Kohl, and Y. E. Papelis, "Practical Use of Visualiza-
tion for Parallel Systems," Invited Keynote Address Text for 19917 European
Workshop on Parallel Computers (EWPC), Barcelona, Spain, March 23-24,
1992.

Stasko, John T. and Kraemer, Eileen, "A Methodology for Building
Application-Specific Visualizations of Parallel Programs," Technical Report
Graphics, Visualization, and Usability Center, Georgia Institute of Technol-
ogy, GIT-GVU-OB-IO, also to appear in Journal of Parallel and Distributed
Computing, May 1998, Jan. 1992 SK polka-report.

Thomas P. Green and Jeff Snyder, "DQS, A Distributed Queuing System,"

DQS Documents, March 1992.

Louis S. Revor, "DQS Users Guide," DQS Documents, Sept. 1992.

Alan Klietz, "The Distributed Job Manager," User's Guide of DJM, 1992.

Allan Brieker, Michael Litzkow, and Miron Livny, "Condor Technical Sum-

mary," Condor Documents, Sept. 1991.

Allan Brieker, Michael Litzkow, and Miron Livny, "Condor Technical Sum-
mary," Condor Documents, Sept. 1991.

Ron Minnieh and Dave Farber, "Reducing Host Load, Network Load, and

Latency in a Distributed Shared Memory," lOth ICDCS, I990.

Ron Minnieh, "Mether: A Memory System for Network Multiproeessors,"
Ph.D. Thesis, U. Penn., 1991.

Ron Minnieh and Dan Pryor, "A Radiative Heat Transfer Simulation on a
SPARCStation Farm," HPDC-1, 199B.

C. Farhat and M. Lesoinne, "Automatic Partitioning of Unstructured
Meshes for the Parallel Solution of Problems in Computational Mechanics,"
International Journal for Numerical Methods in Engineering, vol. Vol. 36,

No. 5, pp. 745-764 , 1993.

Brent C. Gorda and Eugene D. Brooks III, "Gang Scheduling a Parallel
Machine," Lawrence Livermore National Laboratory UCRL-JC-107020 Rev.
1.

Scott R. Kohn and Scott B. Baden, "Blobs: Visualization of Particle
Methods on Multiproeessors," CSE Technical Report Number CS92-241,

May, 1992.

Experience With an Automatic Solution to the Mapping Problem in The
Characteristics of Parallel Programs, MIT Press, 1987.

165 -

Appendix A: Comparison of Parallel Languages

The table on the next page compares the languages described in Part 1. It
indicates whether there is a compiler/translator for the language, and whether
there are debuggers and performance tuning tools associated. It also indicates if
the language is useful to NAS at this time.

- 166 -

Parallel Languages

Name Page

Adaptor

Gaper
CC++
Charm

Code 2.0
Cool
Dino

Force
Fortran 90

Fortran D
Fortran M

Grids

HPF

HyperTool
Jade

Linda
Meld(_

Mentat
Modula-2*

O-O Fortran
P-Languages

Parallax

Parallaxis
PC++

P(_N
PCP/PFP

PDDP
P-D Linda

Sisal
SR

Strand88

Topsys
Vienna Fortran

Visage
X3H5

Compiler
Preorocessor

V

Y

y

y

y

Y

Y
Y
Y
Y
Y
n
Y
Y
Y
Y
Y
Y
V

Y

n

Y
¥

Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
n

Debugger

Tool

V

n

II
II
n

V

n
II

n

n

n

Performance

To l AS
n

v

n

Y

y

n

/l

/i

n

It
It

Y
n

Y Y
y la

n n

n n

n n

n V

Y Y
n n

Y Y

n B
n n

¥ n
n
V ¥

Y Y
n n
n y

n la

Useful
Number

n

n.m

n,m

n.m

l:um
n.m

n.m

ia.m

_td

Ill
11,111
n.m
std

B,II1

l_,m

m

n

n.m

n

n.m

n°m

II
I1

n.m

B.m

n
n

la

i1
n.m

II,IIl
II

n.m

std

16
56
41
31
24
39
32
18
10
21
23
26
12
33
29
52
42
37

45
19
17

62
43
35
50
27
28
61

48
60
46
54
20
58
14

O-O:

P-D:

m:

n:

n,m:

std:

y:

Object-Oriented
Prolog-D

may be (user experience needed and/or support NAS platforms)
no

no at present time, maybe in the future
proposed standard

yes

- 167-

Appendix B: Comparison of Libraries

The table below compares the libraries described in Part 2. The entry
"Machine n lists the type of machines which the library supports: shared-

memory, message-passing, and networks of computers. The entries nDebuggern
and "Performance Tools n indicate if there are debugging and performance tools
associated with the library.

Libraries

Name

APPL
Canoov

CM
CP$

Express
GenMP

LMP$
Mtask

P4
Parmacs

Parti
PICL
PVM
SPPL

TCGMSG

Machine Debugger Performance
Tool

II
I1
n

Y
Y
n

n

n

Useful

to NA$

n,m

N,M
n,m
n,m

m

n
n

NjM

m
m

Page
Number

ms_

sh.ms_,net
net

Net

sh,msg,net
_D

Ilasg
sh

sh.ms_.net
sh.ms_.net

ms_.net

msg
aet
net

sh.ms_

Il
II
I1

Y
Y
n

I1

Il

Y

I1

7
Y
n
Y

Y
n

in
n

n_m

79
72
82
74
64
87
85
86
69
76

81
78
67
84
7O

m:

msg:
n:

n,m:

net:
sh:

sp:
y:

may be (user experience needed)
message passing
no

no at present time, maybe in the future
network of computers
shared memory
special purpose
yes

- 168 -

Appendix C:

Comparison of Debugging and Performance Tuning Tools

The table on the next page compares the main features of the tools
described in Part 3. Many tools in this part provide visualization of execution
trace for performance tuning. Visualizing program behavior also helps debug-
ging, although debugging might not be the focus of the design of the tool. The
ntr_ in the nDebuggern entry below reflects this side effect. The entry _Trace
Generation _ indicates whether a tool generates trace and the method of trace

generation if it does. The entry nVisualizationn indicates the main features of
the visualization.

- 169-

Debuggers and Performance Tuning Tools

Name

AIMS
Atexo¢rt

BBN-Perf
ExecDiff

Falcon

GPM$

Intel-PCrf
IPD

IPS-2
KSR-Perf
Maritxu
MPPE
Pablo

ParaGraph
ParaSDhere

Prism

T0talView
UDB

UDshot

Voyeur
XAB

Xodb

Debugger Trace

Generatio/l

tr

n
tr
d

au,u

au

au_u

u

tr u

tr u
tr u

nsl,t]
tr
n
tr
sl
tr

tr u
Sl au

sl au
sl u

Y
au_u

n

au,u

u

n

n

u

tr

Visualization

_.an.sm.D
_.st.sm
g.st.D

tx

g.an

_,an,sm,p
ff.an.sm.D

tx

Y
tx

man

_.an,sm,p
g,an

_.an.sm,p
_.st,sm,p
_.an,sm,p

tx
n

Useful
To NAS

m

Y
m

n

n,ii9
n

m

m

m
m
m

11"1
In
In
m
Y
m
m
m

Page

Number
111

102
• 109
• 101

114

n

tr au

tl n

g,an,srn,p
t×,p
g,an

n

n

m

n

120
104
98

11;_
107
11_
91
112
105
9a
89
95
97

117
116
99
lOO

an:

au:

d:

g:
m:

n:

n,m:

p:
sl:

sm:
st:
tl:

tr:
tx:

u:

Y:

animation-based visualization
automatic source instrumentation

debugging based on data comparison
graphical

may be (user experience needed, and/or if we have the machine)
no

no at present time, maybe in the future
profile

source-level debugging
summary
static visualization

task-level debugging

trace-visualization-based debugging (focus is performance tuning)
text only
user-directed source instrumentation

yes

- 170-

Appendix D: Comparison of Parallelization Tools

The table below compares the functions of the tools described in Part 4. It
indicates whether a tool performs static code analysis such as dependency

analysis, whether it transforms a code to increase parallelism, and whether it gen-
erates code (machine code or source code) for target machines. It also indicates
whether there are debugging and performance tuning tools associated with the
tool.

Parallelization Tools

Name

t_nterurise
Forge 90

fpp
KAP

ParaScooe
PAT

Pvrros
Schedule

Tiny

Analysis/
Transform.

n

v

Y
Y
v
v

I1
n

v

Code

Gen.

Y

¥

Y

Y

Y

Y
Y

Y
n

Debugger

Y

n

n

Y
I1
n

Y
13

Performance

Tool
g

Y
n

Useful
to bIAS

n
Y
V

Ill
Ill
n
I1
Ill

Page
Number

136

124
122
123
127
130
135
134
132

Transform.: Transformation
Gen.: Generation

m: may be (user experience needed, or for tools development)
n: no

n,m: no at present time, maybe in the future
y: yes

- 171-

Appendix E: Summary of Other Tools

The table below summarizes the tools described in Part 5. The entry
"Meta-Tool" indicates if a tool is for the design and development of other tools.

The entry Scheduler/Load Balancer indicates if the tools is for task scheduling

and/or load balancing. The entry "Network Support n indicates if the tool is to
facilitate parallel computation on a network of computers.

Other Tools

Name

Blobs

Condor
DJM
DQS

Funnel

Gang

Improy

MNF$
Paradise
Polka

Prep-P
Sa_e

TouDomDec

Meta-Tool

n
Ii
n

n
n

P

P
P
n

n

Scheduler/
Load Balancer

sim

Y
Y
n

Y

Y

n
n
n

sire

Network

$uvvort
n

Y
Y
Y
Y
n
n

Y
/i
n

n

n
n

Useful
to NAS

I1
m
m

m

m
n

ii,m

n,m

njm

m
n

m

in

Page
Number

153

147

146

144

145
152

139
149
141
143
154
138
150

C:

m:
n:

n,m:
ns:

p:
sim"

y:

for designing compiler front-end

may be (user experience needed)
no

no at present time, maybe in the future
network support
for performance tuning tools
through simulation

yes

Reviewers:

"1 have carefully and thoroughly reviewed this

technical report. I have worked with the

author(s) to ensure clarity of presentation and

technical accuracy. I take personal

responsibility for the quality of this document."

Branch Chief:

Date:

Approved"

TR Number:

Important: Put this form as the last page in the published Tech Report.

